Thank you, Andreas.

When I try

> pipe_lr.named_steps['clf'].coef_


I get:

> AttributeError: 'LogisticRegression' object has no attribute 'coef_'


And when I try:

> pipe_lr.named_steps['clf']


I get:

> LogisticRegression(C=0.1, class_weight=None, dual=False,
> fit_intercept=True, intercept_scaling=1, max_iter=100, multi_class='ovr',
> n_jobs=1, penalty='l2', random_state=None, solver='liblinear', tol=0.0001,
> verbose=0, warm_start=False)


I wonder what I am missing?

Thanks,
Raga


On Mon, Aug 28, 2017 at 12:01 PM, Andreas Mueller <t3k...@gmail.com> wrote:

> Can can get the coefficients on the scaled data with
> pipeline_lr.named_steps_['clf'].coef_
> though
>
>
> On 08/28/2017 12:08 AM, Raga Markely wrote:
>
> No problem, thank you!
>
> Best,
> Raga
>
> On Mon, Aug 28, 2017 at 12:01 AM, Joel Nothman <joel.noth...@gmail.com>
> wrote:
>
>> No, we do not have a way to get the coefficients with respect to the
>> input (pre-scaling) space.
>>
>> On 28 August 2017 at 13:20, Raga Markely <raga.mark...@gmail.com> wrote:
>>
>>> Hello,
>>>
>>> I am wondering if it's possible to get the weight coefficients of
>>> logistic regression from a pipeline?
>>>
>>> For instance, I have the followings:
>>>
>>>> clf_lr = LogisticRegression(penalty='l1', C=0.1)
>>>> pipe_lr = Pipeline([['sc', StandardScaler()], ['clf', clf_lr]])
>>>> pipe_lr.fit(X, y)
>>>
>>>
>>> Does pipe_lr have an attribute that I can call to get the weight
>>> coefficient?
>>>
>>> Or do I have to get it from the classifier as follows?
>>>
>>>> X_std = StandardScaler().fit_transform(X)
>>>> clf_lr = LogisticRegression(penalty='l1', C=0.1)
>>>> clf_lr.fit(X_std, y)
>>>> clf_lr.coef_
>>>
>>>
>>> Thank you,
>>> Raga
>>>
>>>
>>> _______________________________________________
>>> scikit-learn mailing list
>>> scikit-learn@python.org
>>> https://mail.python.org/mailman/listinfo/scikit-learn
>>>
>>>
>>
>> _______________________________________________
>> scikit-learn mailing list
>> scikit-learn@python.org
>> https://mail.python.org/mailman/listinfo/scikit-learn
>>
>>
>
>
> _______________________________________________
> scikit-learn mailing 
> listscikit-learn@python.orghttps://mail.python.org/mailman/listinfo/scikit-learn
>
>
>
> _______________________________________________
> scikit-learn mailing list
> scikit-learn@python.org
> https://mail.python.org/mailman/listinfo/scikit-learn
>
>
_______________________________________________
scikit-learn mailing list
scikit-learn@python.org
https://mail.python.org/mailman/listinfo/scikit-learn

Reply via email to