Have you called "fit" on the pipeline?

On 08/28/2017 02:12 PM, Raga Markely wrote:
Thank you, Andreas.

When I try

    pipe_lr.named_steps['clf'].coef_


I get:

    AttributeError: 'LogisticRegression' object has no attribute 'coef_'


And when I try:

    pipe_lr.named_steps['clf']


I get:

    LogisticRegression(C=0.1, class_weight=None, dual=False,
    fit_intercept=True, intercept_scaling=1, max_iter=100,
    multi_class='ovr', n_jobs=1, penalty='l2', random_state=None,
    solver='liblinear', tol=0.0001, verbose=0, warm_start=False)


I wonder what I am missing?

Thanks,
Raga


On Mon, Aug 28, 2017 at 12:01 PM, Andreas Mueller <t3k...@gmail.com <mailto:t3k...@gmail.com>> wrote:

    Can can get the coefficients on the scaled data with
    pipeline_lr.named_steps_['clf'].coef_
    though


    On 08/28/2017 12:08 AM, Raga Markely wrote:
    No problem, thank you!

    Best,
    Raga

    On Mon, Aug 28, 2017 at 12:01 AM, Joel Nothman
    <joel.noth...@gmail.com <mailto:joel.noth...@gmail.com>> wrote:

        No, we do not have a way to get the coefficients with respect
        to the input (pre-scaling) space.

        On 28 August 2017 at 13:20, Raga Markely
        <raga.mark...@gmail.com <mailto:raga.mark...@gmail.com>> wrote:

            Hello,

            I am wondering if it's possible to get the weight
            coefficients of logistic regression from a pipeline?

            For instance, I have the followings:

                clf_lr = LogisticRegression(penalty='l1', C=0.1)
                pipe_lr = Pipeline([['sc', StandardScaler()], ['clf',
                clf_lr]])
                pipe_lr.fit(X, y)


            Does pipe_lr have an attribute that I can call to get the
            weight coefficient?

            Or do I have to get it from the classifier as follows?

                X_std = StandardScaler().fit_transform(X)
                clf_lr = LogisticRegression(penalty='l1', C=0.1)
                clf_lr.fit(X_std, y)
                clf_lr.coef_


            Thank you,
            Raga


            _______________________________________________
            scikit-learn mailing list
            scikit-learn@python.org <mailto:scikit-learn@python.org>
            https://mail.python.org/mailman/listinfo/scikit-learn
            <https://mail.python.org/mailman/listinfo/scikit-learn>



        _______________________________________________
        scikit-learn mailing list
        scikit-learn@python.org <mailto:scikit-learn@python.org>
        https://mail.python.org/mailman/listinfo/scikit-learn
        <https://mail.python.org/mailman/listinfo/scikit-learn>




    _______________________________________________
    scikit-learn mailing list
    scikit-learn@python.org <mailto:scikit-learn@python.org>
    https://mail.python.org/mailman/listinfo/scikit-learn
    <https://mail.python.org/mailman/listinfo/scikit-learn>


    _______________________________________________
    scikit-learn mailing list
    scikit-learn@python.org <mailto:scikit-learn@python.org>
    https://mail.python.org/mailman/listinfo/scikit-learn
    <https://mail.python.org/mailman/listinfo/scikit-learn>




_______________________________________________
scikit-learn mailing list
scikit-learn@python.org
https://mail.python.org/mailman/listinfo/scikit-learn

_______________________________________________
scikit-learn mailing list
scikit-learn@python.org
https://mail.python.org/mailman/listinfo/scikit-learn

Reply via email to