Sounds good.. tried it and works.. thank you!

On Mon, Aug 28, 2017 at 3:20 PM, Andreas Mueller <t3k...@gmail.com> wrote:

> you can also use grid.best_estimator_ (and then all the rest)
>
> On 08/28/2017 03:07 PM, Raga Markely wrote:
>
> Ah.. got it :D..
>
> The pipeline was run in gridsearchcv..
>
> It works now after calling fit..
>
> Thanks!
> Raga
>
> On Mon, Aug 28, 2017 at 2:55 PM, Andreas Mueller <t3k...@gmail.com> wrote:
>
>> Have you called "fit" on the pipeline?
>>
>>
>> On 08/28/2017 02:12 PM, Raga Markely wrote:
>>
>> Thank you, Andreas.
>>
>> When I try
>>
>>> pipe_lr.named_steps['clf'].coef_
>>
>>
>> I get:
>>
>>> AttributeError: 'LogisticRegression' object has no attribute 'coef_'
>>
>>
>> And when I try:
>>
>>> pipe_lr.named_steps['clf']
>>
>>
>> I get:
>>
>>> LogisticRegression(C=0.1, class_weight=None, dual=False,
>>> fit_intercept=True, intercept_scaling=1, max_iter=100, multi_class='ovr',
>>> n_jobs=1, penalty='l2', random_state=None, solver='liblinear', tol=0.0001,
>>> verbose=0, warm_start=False)
>>
>>
>> I wonder what I am missing?
>>
>> Thanks,
>> Raga
>>
>>
>> On Mon, Aug 28, 2017 at 12:01 PM, Andreas Mueller <t3k...@gmail.com>
>> wrote:
>>
>>> Can can get the coefficients on the scaled data with
>>> pipeline_lr.named_steps_['clf'].coef_
>>> though
>>>
>>>
>>> On 08/28/2017 12:08 AM, Raga Markely wrote:
>>>
>>> No problem, thank you!
>>>
>>> Best,
>>> Raga
>>>
>>> On Mon, Aug 28, 2017 at 12:01 AM, Joel Nothman <joel.noth...@gmail.com>
>>> wrote:
>>>
>>>> No, we do not have a way to get the coefficients with respect to the
>>>> input (pre-scaling) space.
>>>>
>>>> On 28 August 2017 at 13:20, Raga Markely <raga.mark...@gmail.com>
>>>> wrote:
>>>>
>>>>> Hello,
>>>>>
>>>>> I am wondering if it's possible to get the weight coefficients of
>>>>> logistic regression from a pipeline?
>>>>>
>>>>> For instance, I have the followings:
>>>>>
>>>>>> clf_lr = LogisticRegression(penalty='l1', C=0.1)
>>>>>> pipe_lr = Pipeline([['sc', StandardScaler()], ['clf', clf_lr]])
>>>>>> pipe_lr.fit(X, y)
>>>>>
>>>>>
>>>>> Does pipe_lr have an attribute that I can call to get the weight
>>>>> coefficient?
>>>>>
>>>>> Or do I have to get it from the classifier as follows?
>>>>>
>>>>>> X_std = StandardScaler().fit_transform(X)
>>>>>> clf_lr = LogisticRegression(penalty='l1', C=0.1)
>>>>>> clf_lr.fit(X_std, y)
>>>>>> clf_lr.coef_
>>>>>
>>>>>
>>>>> Thank you,
>>>>> Raga
>>>>>
>>>>>
>>>>> _______________________________________________
>>>>> scikit-learn mailing list
>>>>> scikit-learn@python.org
>>>>> https://mail.python.org/mailman/listinfo/scikit-learn
>>>>>
>>>>>
>>>>
>>>> _______________________________________________
>>>> scikit-learn mailing list
>>>> scikit-learn@python.org
>>>> https://mail.python.org/mailman/listinfo/scikit-learn
>>>>
>>>>
>>>
>>>
>>> _______________________________________________
>>> scikit-learn mailing 
>>> listscikit-learn@python.orghttps://mail.python.org/mailman/listinfo/scikit-learn
>>>
>>>
>>>
>>> _______________________________________________
>>> scikit-learn mailing list
>>> scikit-learn@python.org
>>> https://mail.python.org/mailman/listinfo/scikit-learn
>>>
>>>
>>
>>
>> _______________________________________________
>> scikit-learn mailing 
>> listscikit-learn@python.orghttps://mail.python.org/mailman/listinfo/scikit-learn
>>
>>
>>
>> _______________________________________________
>> scikit-learn mailing list
>> scikit-learn@python.org
>> https://mail.python.org/mailman/listinfo/scikit-learn
>>
>>
>
>
> _______________________________________________
> scikit-learn mailing 
> listscikit-learn@python.orghttps://mail.python.org/mailman/listinfo/scikit-learn
>
>
>
> _______________________________________________
> scikit-learn mailing list
> scikit-learn@python.org
> https://mail.python.org/mailman/listinfo/scikit-learn
>
>
_______________________________________________
scikit-learn mailing list
scikit-learn@python.org
https://mail.python.org/mailman/listinfo/scikit-learn

Reply via email to