I have never seen this error and I am unable to understand it. Any help 
will be much appreciated. 
Theano 0.9rc3 using the cuda backend.

    storage_map=getattr(self.fn, 'storage_map', None))

  File 
"/Users/ragav/anaconda/lib/python2.7/site-packages/theano/gof/link.py", 
line 325, in raise_with_op

    reraise(exc_type, exc_value, exc_trace)

  File 
"/Users/ragav/anaconda/lib/python2.7/site-packages/theano/compile/function_module.py",
 
line 884, in __call__

    self.fn() if output_subset is None else\

AssertionError: Theano Assert failed!

Apply node that caused the error: Assert{msg='Theano Assert 
failed!'}(GpuElemwise{Composite{tanh((i0 + i1))}}[(0, 0)].0, 
TensorConstant{False})

Toposort index: 140

Inputs types: [CudaNdarrayType(float32, 4D), TensorType(bool, scalar)]

Inputs shapes: [(100, 1, 28, 28), ()]

Inputs strides: [(784, 0, 28, 1), ()]

Inputs values: ['not shown', array(False, dtype=bool)]

Inputs type_num: ['', 0]

Outputs clients: [[Assert{msg='Theano Assert failed!'}(Assert{msg='Theano 
Assert failed!'}.0, TensorConstant{False})]]


Debugprint of the apply node: 

Assert{msg='Theano Assert failed!'} [id A] <CudaNdarrayType(float32, 4D)> 
''   

 |GpuElemwise{Composite{tanh((i0 + i1))}}[(0, 0)] [id B] 
<CudaNdarrayType(float32, 4D)> ''   

 | |GpuDnnConvGradI{algo='none', inplace=True} [id C] 
<CudaNdarrayType(float32, 4D)> ''   

 | | |GpuContiguous [id D] <CudaNdarrayType(float32, 4D)> ''   

 | | | |filterbank [id E] <CudaNdarrayType(float32, 4D)>

 | | |GpuContiguous [id F] <CudaNdarrayType(float32, 4D)> ''   

 | | | |GpuReshape{4} [id G] <CudaNdarrayType(float32, 4D)> ''   

 | | |   |GpuElemwise{Composite{(i0 * ((i1 + i2) + Abs((i1 + i2))))}}[(0, 
1)] [id H] <CudaNdarrayType(float32, matrix)> ''   

 | | |   | |CudaNdarrayConstant{[[ 0.5]]} [id I] <CudaNdarrayType(float32, 
(True, True))>

 | | |   | |GpuDot22 [id J] <CudaNdarrayType(float32, matrix)> ''   

 | | |   | | |GpuElemwise{Composite{(i0 * ((i1 + i2) + Abs((i1 + 
i2))))}}[(0, 1)] [id K] <CudaNdarrayType(float32, matrix)> ''   

 | | |   | | | |CudaNdarrayConstant{[[ 0.5]]} [id I] 
<CudaNdarrayType(float32, (True, True))>

 | | |   | | | |GpuDot22 [id L] <CudaNdarrayType(float32, matrix)> ''   

 | | |   | | | | |GpuReshape{2} [id M] <CudaNdarrayType(float32, matrix)> 
''   

 | | |   | | | | | |GpuJoin [id N] <CudaNdarrayType(float32, vector)> ''   

 | | |   | | | | | | |TensorConstant{0} [id O] <TensorType(int8, scalar)>

 | | |   | | | | | | |GpuElemwise{Composite{(i0 * cos(i1))},no_inplace} [id 
P] <CudaNdarrayType(float32, vector)> ''   

 | | |   | | | | | | | |GpuElemwise{Composite{sqrt((i0 * 
log(i1)))},no_inplace} [id Q] <CudaNdarrayType(float32, vector)> ''   

 | | |   | | | | | | | | |CudaNdarrayConstant{[-2.]} [id R] 
<CudaNdarrayType(float32, (True,))>

 | | |   | | | | | | | | |GpuSubtensor{:int64:} [id S] 
<CudaNdarrayType(float32, vector)> ''   

 | | |   | | | | | | | |   |GPU_mrg_uniform{CudaNdarrayType(float32, 
vector),inplace}.1 [id T] <CudaNdarrayType(float32, vector)> ''   

 | | |   | | | | | | | |   | |<CudaNdarrayType(float32, vector)> [id U] 
<CudaNdarrayType(float32, vector)>

 | | |   | | | | | | | |   | |TensorConstant{(1,) of 1000} [id V] 
<TensorType(int64, (True,))>

 | | |   | | | | | | | |   |Constant{500} [id W] <int64>

 | | |   | | | | | | | |GpuElemwise{Mul}[(0, 1)] [id X] 
<CudaNdarrayType(float32, vector)> ''   

 | | |   | | | | | | |   |CudaNdarrayConstant{[ 6.28318548]} [id Y] 
<CudaNdarrayType(float32, (True,))>

 | | |   | | | | | | |   |GpuSubtensor{int64::} [id Z] 
<CudaNdarrayType(float32, vector)> ''   

 | | |   | | | | | | |     |GPU_mrg_uniform{CudaNdarrayType(float32, 
vector),inplace}.1 [id T] <CudaNdarrayType(float32, vector)> ''   

 | | |   | | | | | | |     |Constant{500} [id W] <int64>

 | | |   | | | | | | |GpuElemwise{Composite{(i0 * sin(i1))}}[(0, 0)] [id 
BA] <CudaNdarrayType(float32, vector)> ''   

 | | |   | | | | | |   |GpuElemwise{Composite{sqrt((i0 * 
log(i1)))},no_inplace} [id Q] <CudaNdarrayType(float32, vector)> ''   

 | | |   | | | | | |   |GpuElemwise{Mul}[(0, 1)] [id X] 
<CudaNdarrayType(float32, vector)> ''   

 | | |   | | | | | |TensorConstant{[100  10]} [id BB] <TensorType(int64, 
vector)>

 | | |   | | | | |weights [id BC] <CudaNdarrayType(float32, matrix)>

 | | |   | | | |GpuDimShuffle{x,0} [id BD] <CudaNdarrayType(float32, row)> 
''   

 | | |   | | |   |bias [id BE] <CudaNdarrayType(float32, vector)>

 | | |   | | |weights [id BF] <CudaNdarrayType(float32, matrix)>

 | | |   | |GpuDimShuffle{x,0} [id BG] <CudaNdarrayType(float32, row)> ''   

 | | |   |   |bias [id BH] <CudaNdarrayType(float32, vector)>

 | | |   |TensorConstant{[100  10  13  13]} [id BI] <TensorType(int64, 
vector)>

 | | |GpuAllocEmpty [id BJ] <CudaNdarrayType(float32, 4D)> ''   

 | | | |TensorConstant{100} [id BK] <TensorType(int64, scalar)>

 | | | |Shape_i{1} [id BL] <TensorType(int64, scalar)> ''   

 | | | | |filterbank [id E] <CudaNdarrayType(float32, 4D)>

 | | | |TensorConstant{28} [id BM] <TensorType(int64, scalar)>

 | | | |TensorConstant{28} [id BN] <TensorType(int64, scalar)>

 | | |GpuDnnConvDesc{border_mode='valid', subsample=(2, 2), 
conv_mode='conv', precision='float32'} [id BO] 
<CDataType{cudnnConvolutionDescriptor_t}> ''   

 | | | |MakeVector{dtype='int64'} [id BP] <TensorType(int64, vector)> ''   

 | | | | |TensorConstant{100} [id BK] <TensorType(int64, scalar)>

 | | | | |Shape_i{1} [id BL] <TensorType(int64, scalar)> ''   

 | | | | |TensorConstant{28} [id BM] <TensorType(int64, scalar)>

 | | | | |TensorConstant{28} [id BN] <TensorType(int64, scalar)>

 | | | |MakeVector{dtype='int64'} [id BQ] <TensorType(int64, vector)> ''   

 | | |   |Shape_i{0} [id BR] <TensorType(int64, scalar)> ''   

 | | |   | |filterbank [id E] <CudaNdarrayType(float32, 4D)>

 | | |   |Shape_i{1} [id BL] <TensorType(int64, scalar)> ''   

 | | |   |Shape_i{2} [id BS] <TensorType(int64, scalar)> ''   

 | | |   | |filterbank [id E] <CudaNdarrayType(float32, 4D)>

 | | |   |Shape_i{3} [id BT] <TensorType(int64, scalar)> ''   

 | | |     |filterbank [id E] <CudaNdarrayType(float32, 4D)>

 | | |Constant{1.0} [id BU] <float32>

 | | |Constant{0.0} [id BV] <float32>

 | |GpuDimShuffle{x,0,x,x} [id BW] <CudaNdarrayType(float32, (True, False, 
True, True))> ''   

 |   |bias [id BX] <CudaNdarrayType(float32, vector)>

 |TensorConstant{False} [id BY] <TensorType(bool, scalar)>


Storage map footprint:

 - <CudaNdarrayType(float32, matrix)>, Shared Input, Shape: (50000, 784), 
ElemSize: 4 Byte(s), TotalSize: 156800000 Byte(s)

 - weights, Shared Input, Shape: (1200, 1690), ElemSize: 4 Byte(s), 
TotalSize: 8112000 Byte(s)

 - weights, Shared Input, Shape: (1250, 1200), ElemSize: 4 Byte(s), 
TotalSize: 6000000 Byte(s)

 - weights, Shared Input, Shape: (240, 1200), ElemSize: 4 Byte(s), 
TotalSize: 1152000 Byte(s)

 - GpuElemwise{Composite{tanh((i0 + i1))}}[(0, 0)].0, Shape: (100, 1, 28, 
28), ElemSize: 4 Byte(s), TotalSize: 313600 Byte(s)

 - <CudaNdarrayType(float32, vector)>, Shared Input, Shape: (50000,), 
ElemSize: 4 Byte(s), TotalSize: 200000 Byte(s)

 - weights, Shared Input, Shape: (10, 1200), ElemSize: 4 Byte(s), 
TotalSize: 48000 Byte(s)

 - filterbank, Shared Input, Shape: (50, 20, 3, 3), ElemSize: 4 Byte(s), 
TotalSize: 36000 Byte(s)

 - GpuContiguous.0, Shape: (50, 20, 3, 3), ElemSize: 4 Byte(s), TotalSize: 
36000 Byte(s)

 - bias, Shared Input, Shape: (1690,), ElemSize: 4 Byte(s), TotalSize: 6760 
Byte(s)

 - bias, Shared Input, Shape: (1200,), ElemSize: 4 Byte(s), TotalSize: 4800 
Byte(s)

 - bias, Shared Input, Shape: (1200,), ElemSize: 4 Byte(s), TotalSize: 4800 
Byte(s)

 - bias, Shared Input, Shape: (1200,), ElemSize: 4 Byte(s), TotalSize: 4800 
Byte(s)

 - GPU_mrg_uniform{CudaNdarrayType(float32, vector),inplace}.0, Shape: 
(996,), ElemSize: 4 Byte(s), TotalSize: 3984 Byte(s)

 - <CudaNdarrayType(float32, vector)>, Shared Input, Shape: (996,), 
ElemSize: 4 Byte(s), TotalSize: 3984 Byte(s)

 - filterbank, Shared Input, Shape: (20, 1, 5, 5), ElemSize: 4 Byte(s), 
TotalSize: 2000 Byte(s)

 - weights, Shared Input, Shape: (240, 1), ElemSize: 4 Byte(s), TotalSize: 
960 Byte(s)

 - filterbank, Shared Input, Shape: (10, 1, 3, 3), ElemSize: 4 Byte(s), 
TotalSize: 360 Byte(s)

 - bias, Shared Input, Shape: (50,), ElemSize: 4 Byte(s), TotalSize: 200 
Byte(s)

 - GpuDimShuffle{x,0,x,x}.0, Shape: (1, 50, 1, 1), ElemSize: 4 Byte(s), 
TotalSize: 200 Byte(s)

 - bias, Shared Input, Shape: (20,), ElemSize: 4 Byte(s), TotalSize: 80 
Byte(s)

 - GpuDimShuffle{x,0,x,x}.0, Shape: (1, 20, 1, 1), ElemSize: 4 Byte(s), 
TotalSize: 80 Byte(s)

 - MakeVector{dtype='int64'}.0, Shape: (6,), ElemSize: 8 Byte(s), 
TotalSize: 48 Byte(s)

 - Join.0, Shape: (4,), ElemSize: 8 Byte(s), TotalSize: 32 Byte(s)

 - TensorConstant{[100  20  12  12]}, Shape: (4,), ElemSize: 8 Byte(s), 
TotalSize: 32 Byte(s)

 - TensorConstant{[100   1  28  28]}, Shape: (4,), ElemSize: 8 Byte(s), 
TotalSize: 32 Byte(s)

 - TensorConstant{[100  10  13  13]}, Shape: (4,), ElemSize: 8 Byte(s), 
TotalSize: 32 Byte(s)

 - TensorConstant{[100  28  28]}, Shape: (3,), ElemSize: 8 Byte(s), 
TotalSize: 24 Byte(s)

 - TensorConstant{(2,) of 0}, Shape: (2,), ElemSize: 8 Byte(s), TotalSize: 
16 Byte(s)

 - TensorConstant{[ 100 1250]}, Shape: (2,), ElemSize: 8 Byte(s), 
TotalSize: 16 Byte(s)

 - MakeVector{dtype='int64'}.0, Shape: (2,), ElemSize: 8 Byte(s), 
TotalSize: 16 Byte(s)

 - TensorConstant{[100  10]}, Shape: (2,), ElemSize: 8 Byte(s), TotalSize: 
16 Byte(s)

 - MakeVector{dtype='int64'}.0, Shape: (2,), ElemSize: 8 Byte(s), 
TotalSize: 16 Byte(s)

 - TensorConstant{(2,) of 2}, Shape: (2,), ElemSize: 8 Byte(s), TotalSize: 
16 Byte(s)

 - MakeVector{dtype='int64'}.0, Shape: (2,), ElemSize: 8 Byte(s), 
TotalSize: 16 Byte(s)

 - TensorConstant{[100  -1]}, Shape: (2,), ElemSize: 8 Byte(s), TotalSize: 
16 Byte(s)

 - Constant{3}, Shape: (), ElemSize: 8 Byte(s), TotalSize: 8.0 Byte(s)

 - Shape_i{1}.0, Shape: (), ElemSize: 8 Byte(s), TotalSize: 8.0 Byte(s)

 - Constant{2}, Shape: (), ElemSize: 8 Byte(s), TotalSize: 8.0 Byte(s)

 - Shape_i{1}.0, Shape: (), ElemSize: 8 Byte(s), TotalSize: 8.0 Byte(s)

 - TensorConstant{-1}, Shape: (), ElemSize: 8 Byte(s), TotalSize: 8.0 
Byte(s)

 - Subtensor{int64}.0, Shape: (), ElemSize: 8 Byte(s), TotalSize: 8.0 
Byte(s)

 - Constant{0}, Shape: (), ElemSize: 8 Byte(s), TotalSize: 8.0 Byte(s)

 - Assert{msg='The convolution would produce an invalid shape (dim[1] < 
0).'}.0, Shape: (), ElemSize: 8 Byte(s), TotalSize: 8.0 Byte(s)

 - Elemwise{mul,no_inplace}.0, Shape: (), ElemSize: 8 Byte(s), TotalSize: 
8.0 Byte(s)

 - index, Input, Shape: (), ElemSize: 8 Byte(s), TotalSize: 8.0 Byte(s)

 - Constant{4}, Shape: (), ElemSize: 8 Byte(s), TotalSize: 8.0 Byte(s)

 - TensorConstant{28}, Shape: (), ElemSize: 8 Byte(s), TotalSize: 8.0 
Byte(s)

 - Assert{msg='The convolution would produce an invalid shape (dim[2] <= 
0).'}.0, Shape: (), ElemSize: 8 Byte(s), TotalSize: 8.0 Byte(s)

 - TensorConstant{12}, Shape: (), ElemSize: 8 Byte(s), TotalSize: 8.0 
Byte(s)

 - Shape_i{0}.0, Shape: (), ElemSize: 8 Byte(s), TotalSize: 8.0 Byte(s)

 - Assert{msg='The convolution would produce an invalid shape (dim[3] <= 
0).'}.0, Shape: (), ElemSize: 8 Byte(s), TotalSize: 8.0 Byte(s)

 - TensorConstant{28}, Shape: (), ElemSize: 8 Byte(s), TotalSize: 8.0 
Byte(s)

 - Assert{msg='The convolution would produce an invalid shape (dim[1] < 
0).'}.0, Shape: (), ElemSize: 8 Byte(s), TotalSize: 8.0 Byte(s)

 - TensorConstant{(1,) of 1000}, Shape: (1,), ElemSize: 8 Byte(s), 
TotalSize: 8 Byte(s)

 - Assert{msg='The convolution would produce an invalid shape (dim[2] <= 
0).'}.0, Shape: (), ElemSize: 8 Byte(s), TotalSize: 8.0 Byte(s)

 - Assert{msg='The convolution would produce an invalid shape (dim[3] <= 
0).'}.0, Shape: (), ElemSize: 8 Byte(s), TotalSize: 8.0 Byte(s)

 - Constant{1}, Shape: (), ElemSize: 8 Byte(s), TotalSize: 8.0 Byte(s)

 - TensorConstant{(1,) of 100}, Shape: (1,), ElemSize: 8 Byte(s), 
TotalSize: 8 Byte(s)

 - TensorConstant{5}, Shape: (), ElemSize: 8 Byte(s), TotalSize: 8.0 Byte(s)

 - TensorConstant{100}, Shape: (), ElemSize: 8 Byte(s), TotalSize: 8.0 
Byte(s)

 - Constant{500}, Shape: (), ElemSize: 8 Byte(s), TotalSize: 8.0 Byte(s)

 - TensorConstant{28}, Shape: (), ElemSize: 8 Byte(s), TotalSize: 8.0 
Byte(s)

 - TensorConstant{28}, Shape: (), ElemSize: 8 Byte(s), TotalSize: 8.0 
Byte(s)

 - Elemwise{Composite{(i0 + (((i1 + Composite{Switch(LT(i0, i1), i1, 
i0)}(i2, i3)) - Switch(LT(Composite{Switch(LT(i0, i1), i1, 
i0)}(Composite{Switch(GE(i0, i1), i1, i0)}(i4, i2), i3), 
Composite{Switch(LT(i0, i1), i1, i0)}(i2, i3)), Composite{Switch(LT(i0, 
i1), i1, i0)}(Composite{Switch(GE(i0, i1), i1, i0)}(i4, i2), i3), 
Composite{Switch(LT(i0, i1), i1, i0)}(i2, i3))) // i5))}}[(0, 2)].0, Shape: 
(), ElemSize: 8 Byte(s), TotalSize: 8.0 Byte(s)

 - TensorConstant{1}, Shape: (), ElemSize: 8 Byte(s), TotalSize: 8.0 Byte(s)

 - Subtensor{int64}.0, Shape: (), ElemSize: 8 Byte(s), TotalSize: 8.0 
Byte(s)

 - TensorConstant{0}, Shape: (), ElemSize: 8 Byte(s), TotalSize: 8.0 Byte(s)

 - Constant{5}, Shape: (), ElemSize: 8 Byte(s), TotalSize: 8.0 Byte(s)

 - GpuSubtensor{int64}.0, Shape: (), ElemSize: 4 Byte(s), TotalSize: 4.0 
Byte(s)

 - GpuCAReduce{add}{1,1}.0, Shape: (), ElemSize: 4 Byte(s), TotalSize: 4.0 
Byte(s)

 - Constant{1.0}, Shape: (), ElemSize: 4 Byte(s), TotalSize: 4.0 Byte(s)

 - CudaNdarrayConstant{[-2.]}, Shape: (1,), ElemSize: 4 Byte(s), TotalSize: 
4 Byte(s)

 - GpuSubtensor{int64}.0, Shape: (), ElemSize: 4 Byte(s), TotalSize: 4.0 
Byte(s)

 - CudaNdarrayConstant{-0.5}, Shape: (), ElemSize: 4 Byte(s), TotalSize: 
4.0 Byte(s)

 - bias, Shared Input, Shape: (1,), ElemSize: 4 Byte(s), TotalSize: 4 
Byte(s)

 - CudaNdarrayConstant{[[ 0.5]]}, Shape: (1, 1), ElemSize: 4 Byte(s), 
TotalSize: 4 Byte(s)

 - CudaNdarrayConstant{0.5}, Shape: (), ElemSize: 4 Byte(s), TotalSize: 4.0 
Byte(s)

 - bias, Shared Input, Shape: (1,), ElemSize: 4 Byte(s), TotalSize: 4 
Byte(s)

 - CudaNdarrayConstant{[ 6.28318548]}, Shape: (1,), ElemSize: 4 Byte(s), 
TotalSize: 4 Byte(s)

 - CudaNdarrayConstant{[[[[ 0.5]]]]}, Shape: (1, 1, 1, 1), ElemSize: 4 
Byte(s), TotalSize: 4 Byte(s)

 - Constant{0.0}, Shape: (), ElemSize: 4 Byte(s), TotalSize: 4.0 Byte(s)

 - TensorConstant{10}, Shape: (), ElemSize: 1 Byte(s), TotalSize: 1.0 
Byte(s)

 - TensorConstant{20}, Shape: (), ElemSize: 1 Byte(s), TotalSize: 1.0 
Byte(s)

 - TensorConstant{0}, Shape: (), ElemSize: 1 Byte(s), TotalSize: 1.0 Byte(s)

 - TensorConstant{5}, Shape: (), ElemSize: 1 Byte(s), TotalSize: 1.0 Byte(s)

 - TensorConstant{3}, Shape: (), ElemSize: 1 Byte(s), TotalSize: 1.0 Byte(s)

 - TensorConstant{1}, Shape: (), ElemSize: 1 Byte(s), TotalSize: 1.0 Byte(s)

 - Elemwise{eq,no_inplace}.0, Shape: (), ElemSize: 1 Byte(s), TotalSize: 
1.0 Byte(s)

 - TensorConstant{50}, Shape: (), ElemSize: 1 Byte(s), TotalSize: 1.0 
Byte(s)

 - Elemwise{eq,no_inplace}.0, Shape: (), ElemSize: 1 Byte(s), TotalSize: 
1.0 Byte(s)

 - Elemwise{eq,no_inplace}.0, Shape: (), ElemSize: 1 Byte(s), TotalSize: 
1.0 Byte(s)

 - Elemwise{eq,no_inplace}.0, Shape: (), ElemSize: 1 Byte(s), TotalSize: 
1.0 Byte(s)

 - TensorConstant{False}, Shape: (), ElemSize: 1 Byte(s), TotalSize: 1.0 
Byte(s)

 TotalSize: 172726976.0 Byte(s) 0.161 GB

 TotalSize inputs: 172377152.0 Byte(s) 0.161 GB


HINT: Re-running with most Theano optimization disabled could give you a 
back-trace of when this node was created. This can be done with by setting 
the Theano flag 'optimizer=fast_compile'. If that does not work, Theano 
optimizations can be disabled with 'optimizer=None'.

-- 

--- 
You received this message because you are subscribed to the Google Groups 
"theano-users" group.
To unsubscribe from this group and stop receiving emails from it, send an email 
to [email protected].
For more options, visit https://groups.google.com/d/optout.

Reply via email to