This is all the error I get with optimizer = fast_Compile and exception 
verbosity = high. 

On Wednesday, March 8, 2017 at 6:59:20 AM UTC-7, nouiz wrote:
>
> There is a run time assert in the graph that fail. To find where it got 
> created, try with this Theano flag. It will probably add in the error 
> message the stack trace where this assert was created:
>
> optimizer=fast_compile
>
> If not, try optimizer=None.
>
> Fred
>
> On Wed, Mar 8, 2017 at 12:38 AM Ragav Venkatesan <[email protected] 
> <javascript:>> wrote:
>
>> I have never seen this error and I am unable to understand it. Any help 
>> will be much appreciated. 
>> Theano 0.9rc3 using the cuda backend.
>>
>>     storage_map=getattr(self.fn, 'storage_map', None))
>>
>>   File 
>> "/Users/ragav/anaconda/lib/python2.7/site-packages/theano/gof/link.py", 
>> line 325, in raise_with_op
>>
>>     reraise(exc_type, exc_value, exc_trace)
>>
>>   File 
>> "/Users/ragav/anaconda/lib/python2.7/site-packages/theano/compile/function_module.py",
>>  
>> line 884, in __call__
>>
>>     self.fn() if output_subset is None else\
>>
>> AssertionError: Theano Assert failed!
>>
>> Apply node that caused the error: Assert{msg='Theano Assert 
>> failed!'}(GpuElemwise{Composite{tanh((i0 + i1))}}[(0, 0)].0, 
>> TensorConstant{False})
>>
>> Toposort index: 140
>>
>> Inputs types: [CudaNdarrayType(float32, 4D), TensorType(bool, scalar)]
>>
>> Inputs shapes: [(100, 1, 28, 28), ()]
>>
>> Inputs strides: [(784, 0, 28, 1), ()]
>>
>> Inputs values: ['not shown', array(False, dtype=bool)]
>>
>> Inputs type_num: ['', 0]
>>
>> Outputs clients: [[Assert{msg='Theano Assert failed!'}(Assert{msg='Theano 
>> Assert failed!'}.0, TensorConstant{False})]]
>>
>>
>> Debugprint of the apply node: 
>>
>> Assert{msg='Theano Assert failed!'} [id A] <CudaNdarrayType(float32, 4D)> 
>> ''   
>>
>>  |GpuElemwise{Composite{tanh((i0 + i1))}}[(0, 0)] [id B] 
>> <CudaNdarrayType(float32, 4D)> ''   
>>
>>  | |GpuDnnConvGradI{algo='none', inplace=True} [id C] 
>> <CudaNdarrayType(float32, 4D)> ''   
>>
>>  | | |GpuContiguous [id D] <CudaNdarrayType(float32, 4D)> ''   
>>
>>  | | | |filterbank [id E] <CudaNdarrayType(float32, 4D)>
>>
>>  | | |GpuContiguous [id F] <CudaNdarrayType(float32, 4D)> ''   
>>
>>  | | | |GpuReshape{4} [id G] <CudaNdarrayType(float32, 4D)> ''   
>>
>>  | | |   |GpuElemwise{Composite{(i0 * ((i1 + i2) + Abs((i1 + i2))))}}[(0, 
>> 1)] [id H] <CudaNdarrayType(float32, matrix)> ''   
>>
>>  | | |   | |CudaNdarrayConstant{[[ 0.5]]} [id I] 
>> <CudaNdarrayType(float32, (True, True))>
>>
>>  | | |   | |GpuDot22 [id J] <CudaNdarrayType(float32, matrix)> ''   
>>
>>  | | |   | | |GpuElemwise{Composite{(i0 * ((i1 + i2) + Abs((i1 + 
>> i2))))}}[(0, 1)] [id K] <CudaNdarrayType(float32, matrix)> ''   
>>
>>  | | |   | | | |CudaNdarrayConstant{[[ 0.5]]} [id I] 
>> <CudaNdarrayType(float32, (True, True))>
>>
>>  | | |   | | | |GpuDot22 [id L] <CudaNdarrayType(float32, matrix)> ''   
>>
>>  | | |   | | | | |GpuReshape{2} [id M] <CudaNdarrayType(float32, matrix)> 
>> ''   
>>
>>  | | |   | | | | | |GpuJoin [id N] <CudaNdarrayType(float32, vector)> ''  
>>  
>>
>>  | | |   | | | | | | |TensorConstant{0} [id O] <TensorType(int8, scalar)>
>>
>>  | | |   | | | | | | |GpuElemwise{Composite{(i0 * cos(i1))},no_inplace} 
>> [id P] <CudaNdarrayType(float32, vector)> ''   
>>
>>  | | |   | | | | | | | |GpuElemwise{Composite{sqrt((i0 * 
>> log(i1)))},no_inplace} [id Q] <CudaNdarrayType(float32, vector)> ''   
>>
>>  | | |   | | | | | | | | |CudaNdarrayConstant{[-2.]} [id R] 
>> <CudaNdarrayType(float32, (True,))>
>>
>>  | | |   | | | | | | | | |GpuSubtensor{:int64:} [id S] 
>> <CudaNdarrayType(float32, vector)> ''   
>>
>>  | | |   | | | | | | | |   |GPU_mrg_uniform{CudaNdarrayType(float32, 
>> vector),inplace}.1 [id T] <CudaNdarrayType(float32, vector)> ''   
>>
>>  | | |   | | | | | | | |   | |<CudaNdarrayType(float32, vector)> [id U] 
>> <CudaNdarrayType(float32, vector)>
>>
>>  | | |   | | | | | | | |   | |TensorConstant{(1,) of 1000} [id V] 
>> <TensorType(int64, (True,))>
>>
>>  | | |   | | | | | | | |   |Constant{500} [id W] <int64>
>>
>>  | | |   | | | | | | | |GpuElemwise{Mul}[(0, 1)] [id X] 
>> <CudaNdarrayType(float32, vector)> ''   
>>
>>  | | |   | | | | | | |   |CudaNdarrayConstant{[ 6.28318548]} [id Y] 
>> <CudaNdarrayType(float32, (True,))>
>>
>>  | | |   | | | | | | |   |GpuSubtensor{int64::} [id Z] 
>> <CudaNdarrayType(float32, vector)> ''   
>>
>>  | | |   | | | | | | |     |GPU_mrg_uniform{CudaNdarrayType(float32, 
>> vector),inplace}.1 [id T] <CudaNdarrayType(float32, vector)> ''   
>>
>>  | | |   | | | | | | |     |Constant{500} [id W] <int64>
>>
>>  | | |   | | | | | | |GpuElemwise{Composite{(i0 * sin(i1))}}[(0, 0)] [id 
>> BA] <CudaNdarrayType(float32, vector)> ''   
>>
>>  | | |   | | | | | |   |GpuElemwise{Composite{sqrt((i0 * 
>> log(i1)))},no_inplace} [id Q] <CudaNdarrayType(float32, vector)> ''   
>>
>>  | | |   | | | | | |   |GpuElemwise{Mul}[(0, 1)] [id X] 
>> <CudaNdarrayType(float32, vector)> ''   
>>
>>  | | |   | | | | | |TensorConstant{[100  10]} [id BB] <TensorType(int64, 
>> vector)>
>>
>>  | | |   | | | | |weights [id BC] <CudaNdarrayType(float32, matrix)>
>>
>>  | | |   | | | |GpuDimShuffle{x,0} [id BD] <CudaNdarrayType(float32, 
>> row)> ''   
>>
>>  | | |   | | |   |bias [id BE] <CudaNdarrayType(float32, vector)>
>>
>>  | | |   | | |weights [id BF] <CudaNdarrayType(float32, matrix)>
>>
>>  | | |   | |GpuDimShuffle{x,0} [id BG] <CudaNdarrayType(float32, row)> 
>> ''   
>>
>>  | | |   |   |bias [id BH] <CudaNdarrayType(float32, vector)>
>>
>>  | | |   |TensorConstant{[100  10  13  13]} [id BI] <TensorType(int64, 
>> vector)>
>>
>>  | | |GpuAllocEmpty [id BJ] <CudaNdarrayType(float32, 4D)> ''   
>>
>>  | | | |TensorConstant{100} [id BK] <TensorType(int64, scalar)>
>>
>>  | | | |Shape_i{1} [id BL] <TensorType(int64, scalar)> ''   
>>
>>  | | | | |filterbank [id E] <CudaNdarrayType(float32, 4D)>
>>
>>  | | | |TensorConstant{28} [id BM] <TensorType(int64, scalar)>
>>
>>  | | | |TensorConstant{28} [id BN] <TensorType(int64, scalar)>
>>
>>  | | |GpuDnnConvDesc{border_mode='valid', subsample=(2, 2), 
>> conv_mode='conv', precision='float32'} [id BO] 
>> <CDataType{cudnnConvolutionDescriptor_t}> ''   
>>
>>  | | | |MakeVector{dtype='int64'} [id BP] <TensorType(int64, vector)> ''  
>>  
>>
>>  | | | | |TensorConstant{100} [id BK] <TensorType(int64, scalar)>
>>
>>  | | | | |Shape_i{1} [id BL] <TensorType(int64, scalar)> ''   
>>
>>  | | | | |TensorConstant{28} [id BM] <TensorType(int64, scalar)>
>>
>>  | | | | |TensorConstant{28} [id BN] <TensorType(int64, scalar)>
>>
>>  | | | |MakeVector{dtype='int64'} [id BQ] <TensorType(int64, vector)> ''  
>>  
>>
>>  | | |   |Shape_i{0} [id BR] <TensorType(int64, scalar)> ''   
>>
>>  | | |   | |filterbank [id E] <CudaNdarrayType(float32, 4D)>
>>
>>  | | |   |Shape_i{1} [id BL] <TensorType(int64, scalar)> ''   
>>
>>  | | |   |Shape_i{2} [id BS] <TensorType(int64, scalar)> ''   
>>
>>  | | |   | |filterbank [id E] <CudaNdarrayType(float32, 4D)>
>>
>>  | | |   |Shape_i{3} [id BT] <TensorType(int64, scalar)> ''   
>>
>>  | | |     |filterbank [id E] <CudaNdarrayType(float32, 4D)>
>>
>>  | | |Constant{1.0} [id BU] <float32>
>>
>>  | | |Constant{0.0} [id BV] <float32>
>>
>>  | |GpuDimShuffle{x,0,x,x} [id BW] <CudaNdarrayType(float32, (True, 
>> False, True, True))> ''   
>>
>>  |   |bias [id BX] <CudaNdarrayType(float32, vector)>
>>
>>  |TensorConstant{False} [id BY] <TensorType(bool, scalar)>
>>
>>
>> Storage map footprint:
>>
>>  - <CudaNdarrayType(float32, matrix)>, Shared Input, Shape: (50000, 784), 
>> ElemSize: 4 Byte(s), TotalSize: 156800000 Byte(s)
>>
>>  - weights, Shared Input, Shape: (1200, 1690), ElemSize: 4 Byte(s), 
>> TotalSize: 8112000 Byte(s)
>>
>>  - weights, Shared Input, Shape: (1250, 1200), ElemSize: 4 Byte(s), 
>> TotalSize: 6000000 Byte(s)
>>
>>  - weights, Shared Input, Shape: (240, 1200), ElemSize: 4 Byte(s), 
>> TotalSize: 1152000 Byte(s)
>>
>>  - GpuElemwise{Composite{tanh((i0 + i1))}}[(0, 0)].0, Shape: (100, 1, 28, 
>> 28), ElemSize: 4 Byte(s), TotalSize: 313600 Byte(s)
>>
>>  - <CudaNdarrayType(float32, vector)>, Shared Input, Shape: (50000,), 
>> ElemSize: 4 Byte(s), TotalSize: 200000 Byte(s)
>>
>>  - weights, Shared Input, Shape: (10, 1200), ElemSize: 4 Byte(s), 
>> TotalSize: 48000 Byte(s)
>>
>>  - filterbank, Shared Input, Shape: (50, 20, 3, 3), ElemSize: 4 Byte(s), 
>> TotalSize: 36000 Byte(s)
>>
>>  - GpuContiguous.0, Shape: (50, 20, 3, 3), ElemSize: 4 Byte(s), 
>> TotalSize: 36000 Byte(s)
>>
>>  - bias, Shared Input, Shape: (1690,), ElemSize: 4 Byte(s), TotalSize: 
>> 6760 Byte(s)
>>
>>  - bias, Shared Input, Shape: (1200,), ElemSize: 4 Byte(s), TotalSize: 
>> 4800 Byte(s)
>>
>>  - bias, Shared Input, Shape: (1200,), ElemSize: 4 Byte(s), TotalSize: 
>> 4800 Byte(s)
>>
>>  - bias, Shared Input, Shape: (1200,), ElemSize: 4 Byte(s), TotalSize: 
>> 4800 Byte(s)
>>
>>  - GPU_mrg_uniform{CudaNdarrayType(float32, vector),inplace}.0, Shape: 
>> (996,), ElemSize: 4 Byte(s), TotalSize: 3984 Byte(s)
>>
>>  - <CudaNdarrayType(float32, vector)>, Shared Input, Shape: (996,), 
>> ElemSize: 4 Byte(s), TotalSize: 3984 Byte(s)
>>
>>  - filterbank, Shared Input, Shape: (20, 1, 5, 5), ElemSize: 4 Byte(s), 
>> TotalSize: 2000 Byte(s)
>>
>>  - weights, Shared Input, Shape: (240, 1), ElemSize: 4 Byte(s), 
>> TotalSize: 960 Byte(s)
>>
>>  - filterbank, Shared Input, Shape: (10, 1, 3, 3), ElemSize: 4 Byte(s), 
>> TotalSize: 360 Byte(s)
>>
>>  - bias, Shared Input, Shape: (50,), ElemSize: 4 Byte(s), TotalSize: 200 
>> Byte(s)
>>
>>  - GpuDimShuffle{x,0,x,x}.0, Shape: (1, 50, 1, 1), ElemSize: 4 Byte(s), 
>> TotalSize: 200 Byte(s)
>>
>>  - bias, Shared Input, Shape: (20,), ElemSize: 4 Byte(s), TotalSize: 80 
>> Byte(s)
>>
>>  - GpuDimShuffle{x,0,x,x}.0, Shape: (1, 20, 1, 1), ElemSize: 4 Byte(s), 
>> TotalSize: 80 Byte(s)
>>
>>  - MakeVector{dtype='int64'}.0, Shape: (6,), ElemSize: 8 Byte(s), 
>> TotalSize: 48 Byte(s)
>>
>>  - Join.0, Shape: (4,), ElemSize: 8 Byte(s), TotalSize: 32 Byte(s)
>>
>>  - TensorConstant{[100  20  12  12]}, Shape: (4,), ElemSize: 8 Byte(s), 
>> TotalSize: 32 Byte(s)
>>
>>  - TensorConstant{[100   1  28  28]}, Shape: (4,), ElemSize: 8 Byte(s), 
>> TotalSize: 32 Byte(s)
>>
>>  - TensorConstant{[100  10  13  13]}, Shape: (4,), ElemSize: 8 Byte(s), 
>> TotalSize: 32 Byte(s)
>>
>>  - TensorConstant{[100  28  28]}, Shape: (3,), ElemSize: 8 Byte(s), 
>> TotalSize: 24 Byte(s)
>>
>>  - TensorConstant{(2,) of 0}, Shape: (2,), ElemSize: 8 Byte(s), 
>> TotalSize: 16 Byte(s)
>>
>>  - TensorConstant{[ 100 1250]}, Shape: (2,), ElemSize: 8 Byte(s), 
>> TotalSize: 16 Byte(s)
>>
>>  - MakeVector{dtype='int64'}.0, Shape: (2,), ElemSize: 8 Byte(s), 
>> TotalSize: 16 Byte(s)
>>
>>  - TensorConstant{[100  10]}, Shape: (2,), ElemSize: 8 Byte(s), 
>> TotalSize: 16 Byte(s)
>>
>>  - MakeVector{dtype='int64'}.0, Shape: (2,), ElemSize: 8 Byte(s), 
>> TotalSize: 16 Byte(s)
>>
>>  - TensorConstant{(2,) of 2}, Shape: (2,), ElemSize: 8 Byte(s), 
>> TotalSize: 16 Byte(s)
>>
>>  - MakeVector{dtype='int64'}.0, Shape: (2,), ElemSize: 8 Byte(s), 
>> TotalSize: 16 Byte(s)
>>
>>  - TensorConstant{[100  -1]}, Shape: (2,), ElemSize: 8 Byte(s), 
>> TotalSize: 16 Byte(s)
>>
>>  - Constant{3}, Shape: (), ElemSize: 8 Byte(s), TotalSize: 8.0 Byte(s)
>>
>>  - Shape_i{1}.0, Shape: (), ElemSize: 8 Byte(s), TotalSize: 8.0 Byte(s)
>>
>>  - Constant{2}, Shape: (), ElemSize: 8 Byte(s), TotalSize: 8.0 Byte(s)
>>
>>  - Shape_i{1}.0, Shape: (), ElemSize: 8 Byte(s), TotalSize: 8.0 Byte(s)
>>
>>  - TensorConstant{-1}, Shape: (), ElemSize: 8 Byte(s), TotalSize: 8.0 
>> Byte(s)
>>
>>  - Subtensor{int64}.0, Shape: (), ElemSize: 8 Byte(s), TotalSize: 8.0 
>> Byte(s)
>>
>>  - Constant{0}, Shape: (), ElemSize: 8 Byte(s), TotalSize: 8.0 Byte(s)
>>
>>  - Assert{msg='The convolution would produce an invalid shape (dim[1] < 
>> 0).'}.0, Shape: (), ElemSize: 8 Byte(s), TotalSize: 8.0 Byte(s)
>>
>>  - Elemwise{mul,no_inplace}.0, Shape: (), ElemSize: 8 Byte(s), TotalSize: 
>> 8.0 Byte(s)
>>
>>  - index, Input, Shape: (), ElemSize: 8 Byte(s), TotalSize: 8.0 Byte(s)
>>
>>  - Constant{4}, Shape: (), ElemSize: 8 Byte(s), TotalSize: 8.0 Byte(s)
>>
>>  - TensorConstant{28}, Shape: (), ElemSize: 8 Byte(s), TotalSize: 8.0 
>> Byte(s)
>>
>>  - Assert{msg='The convolution would produce an invalid shape (dim[2] <= 
>> 0).'}.0, Shape: (), ElemSize: 8 Byte(s), TotalSize: 8.0 Byte(s)
>>
>>  - TensorConstant{12}, Shape: (), ElemSize: 8 Byte(s), TotalSize: 8.0 
>> Byte(s)
>>
>>  - Shape_i{0}.0, Shape: (), ElemSize: 8 Byte(s), TotalSize: 8.0 Byte(s)
>>
>>  - Assert{msg='The convolution would produce an invalid shape (dim[3] <= 
>> 0).'}.0, Shape: (), ElemSize: 8 Byte(s), TotalSize: 8.0 Byte(s)
>>
>>  - TensorConstant{28}, Shape: (), ElemSize: 8 Byte(s), TotalSize: 8.0 
>> Byte(s)
>>
>>  - Assert{msg='The convolution would produce an invalid shape (dim[1] < 
>> 0).'}.0, Shape: (), ElemSize: 8 Byte(s), TotalSize: 8.0 Byte(s)
>>
>>  - TensorConstant{(1,) of 1000}, Shape: (1,), ElemSize: 8 Byte(s), 
>> TotalSize: 8 Byte(s)
>>
>>  - Assert{msg='The convolution would produce an invalid shape (dim[2] <= 
>> 0).'}.0, Shape: (), ElemSize: 8 Byte(s), TotalSize: 8.0 Byte(s)
>>
>>  - Assert{msg='The convolution would produce an invalid shape (dim[3] <= 
>> 0).'}.0, Shape: (), ElemSize: 8 Byte(s), TotalSize: 8.0 Byte(s)
>>
>>  - Constant{1}, Shape: (), ElemSize: 8 Byte(s), TotalSize: 8.0 Byte(s)
>>
>>  - TensorConstant{(1,) of 100}, Shape: (1,), ElemSize: 8 Byte(s), 
>> TotalSize: 8 Byte(s)
>>
>>  - TensorConstant{5}, Shape: (), ElemSize: 8 Byte(s), TotalSize: 8.0 
>> Byte(s)
>>
>>  - TensorConstant{100}, Shape: (), ElemSize: 8 Byte(s), TotalSize: 8.0 
>> Byte(s)
>>
>>  - Constant{500}, Shape: (), ElemSize: 8 Byte(s), TotalSize: 8.0 Byte(s)
>>
>>  - TensorConstant{28}, Shape: (), ElemSize: 8 Byte(s), TotalSize: 8.0 
>> Byte(s)
>>
>>  - TensorConstant{28}, Shape: (), ElemSize: 8 Byte(s), TotalSize: 8.0 
>> Byte(s)
>>
>>  - Elemwise{Composite{(i0 + (((i1 + Composite{Switch(LT(i0, i1), i1, 
>> i0)}(i2, i3)) - Switch(LT(Composite{Switch(LT(i0, i1), i1, 
>> i0)}(Composite{Switch(GE(i0, i1), i1, i0)}(i4, i2), i3), 
>> Composite{Switch(LT(i0, i1), i1, i0)}(i2, i3)), Composite{Switch(LT(i0, 
>> i1), i1, i0)}(Composite{Switch(GE(i0, i1), i1, i0)}(i4, i2), i3), 
>> Composite{Switch(LT(i0, i1), i1, i0)}(i2, i3))) // i5))}}[(0, 2)].0, Shape: 
>> (), ElemSize: 8 Byte(s), TotalSize: 8.0 Byte(s)
>>
>>  - TensorConstant{1}, Shape: (), ElemSize: 8 Byte(s), TotalSize: 8.0 
>> Byte(s)
>>
>>  - Subtensor{int64}.0, Shape: (), ElemSize: 8 Byte(s), TotalSize: 8.0 
>> Byte(s)
>>
>>  - TensorConstant{0}, Shape: (), ElemSize: 8 Byte(s), TotalSize: 8.0 
>> Byte(s)
>>
>>  - Constant{5}, Shape: (), ElemSize: 8 Byte(s), TotalSize: 8.0 Byte(s)
>>
>>  - GpuSubtensor{int64}.0, Shape: (), ElemSize: 4 Byte(s), TotalSize: 4.0 
>> Byte(s)
>>
>>  - GpuCAReduce{add}{1,1}.0, Shape: (), ElemSize: 4 Byte(s), TotalSize: 
>> 4.0 Byte(s)
>>
>>  - Constant{1.0}, Shape: (), ElemSize: 4 Byte(s), TotalSize: 4.0 Byte(s)
>>
>>  - CudaNdarrayConstant{[-2.]}, Shape: (1,), ElemSize: 4 Byte(s), 
>> TotalSize: 4 Byte(s)
>>
>>  - GpuSubtensor{int64}.0, Shape: (), ElemSize: 4 Byte(s), TotalSize: 4.0 
>> Byte(s)
>>
>>  - CudaNdarrayConstant{-0.5}, Shape: (), ElemSize: 4 Byte(s), TotalSize: 
>> 4.0 Byte(s)
>>
>>  - bias, Shared Input, Shape: (1,), ElemSize: 4 Byte(s), TotalSize: 4 
>> Byte(s)
>>
>>  - CudaNdarrayConstant{[[ 0.5]]}, Shape: (1, 1), ElemSize: 4 Byte(s), 
>> TotalSize: 4 Byte(s)
>>
>>  - CudaNdarrayConstant{0.5}, Shape: (), ElemSize: 4 Byte(s), TotalSize: 
>> 4.0 Byte(s)
>>
>>  - bias, Shared Input, Shape: (1,), ElemSize: 4 Byte(s), TotalSize: 4 
>> Byte(s)
>>
>>  - CudaNdarrayConstant{[ 6.28318548]}, Shape: (1,), ElemSize: 4 Byte(s), 
>> TotalSize: 4 Byte(s)
>>
>>  - CudaNdarrayConstant{[[[[ 0.5]]]]}, Shape: (1, 1, 1, 1), ElemSize: 4 
>> Byte(s), TotalSize: 4 Byte(s)
>>
>>  - Constant{0.0}, Shape: (), ElemSize: 4 Byte(s), TotalSize: 4.0 Byte(s)
>>
>>  - TensorConstant{10}, Shape: (), ElemSize: 1 Byte(s), TotalSize: 1.0 
>> Byte(s)
>>
>>  - TensorConstant{20}, Shape: (), ElemSize: 1 Byte(s), TotalSize: 1.0 
>> Byte(s)
>>
>>  - TensorConstant{0}, Shape: (), ElemSize: 1 Byte(s), TotalSize: 1.0 
>> Byte(s)
>>
>>  - TensorConstant{5}, Shape: (), ElemSize: 1 Byte(s), TotalSize: 1.0 
>> Byte(s)
>>
>>  - TensorConstant{3}, Shape: (), ElemSize: 1 Byte(s), TotalSize: 1.0 
>> Byte(s)
>>
>>  - TensorConstant{1}, Shape: (), ElemSize: 1 Byte(s), TotalSize: 1.0 
>> Byte(s)
>>
>>  - Elemwise{eq,no_inplace}.0, Shape: (), ElemSize: 1 Byte(s), TotalSize: 
>> 1.0 Byte(s)
>>
>>  - TensorConstant{50}, Shape: (), ElemSize: 1 Byte(s), TotalSize: 1.0 
>> Byte(s)
>>
>>  - Elemwise{eq,no_inplace}.0, Shape: (), ElemSize: 1 Byte(s), TotalSize: 
>> 1.0 Byte(s)
>>
>>  - Elemwise{eq,no_inplace}.0, Shape: (), ElemSize: 1 Byte(s), TotalSize: 
>> 1.0 Byte(s)
>>
>>  - Elemwise{eq,no_inplace}.0, Shape: (), ElemSize: 1 Byte(s), TotalSize: 
>> 1.0 Byte(s)
>>
>>  - TensorConstant{False}, Shape: (), ElemSize: 1 Byte(s), TotalSize: 1.0 
>> Byte(s)
>>
>>  TotalSize: 172726976.0 Byte(s) 0.161 GB
>>
>>  TotalSize inputs: 172377152.0 Byte(s) 0.161 GB
>>
>>
>> HINT: Re-running with most Theano optimization disabled could give you a 
>> back-trace of when this node was created. This can be done with by setting 
>> the Theano flag 'optimizer=fast_compile'. If that does not work, Theano 
>> optimizations can be disabled with 'optimizer=None'.
>>
>> -- 
>>
>> --- 
>> You received this message because you are subscribed to the Google Groups 
>> "theano-users" group.
>> To unsubscribe from this group and stop receiving emails from it, send an 
>> email to [email protected] <javascript:>.
>> For more options, visit https://groups.google.com/d/optout.
>>
>

-- 

--- 
You received this message because you are subscribed to the Google Groups 
"theano-users" group.
To unsubscribe from this group and stop receiving emails from it, send an email 
to [email protected].
For more options, visit https://groups.google.com/d/optout.

Reply via email to