Try with optimizer=None as I wrote.

Le mer. 8 mars 2017 16:26, Ragav Venkatesan <[email protected]> a
écrit :

> This is all the error I get with optimizer = fast_Compile and exception
> verbosity = high.
>
>
> On Wednesday, March 8, 2017 at 6:59:20 AM UTC-7, nouiz wrote:
>
> There is a run time assert in the graph that fail. To find where it got
> created, try with this Theano flag. It will probably add in the error
> message the stack trace where this assert was created:
>
> optimizer=fast_compile
>
> If not, try optimizer=None.
>
> Fred
>
> On Wed, Mar 8, 2017 at 12:38 AM Ragav Venkatesan <[email protected]>
> wrote:
>
> I have never seen this error and I am unable to understand it. Any help
> will be much appreciated.
> Theano 0.9rc3 using the cuda backend.
>
>     storage_map=getattr(self.fn, 'storage_map', None))
>
>   File
> "/Users/ragav/anaconda/lib/python2.7/site-packages/theano/gof/link.py",
> line 325, in raise_with_op
>
>     reraise(exc_type, exc_value, exc_trace)
>
>   File
> "/Users/ragav/anaconda/lib/python2.7/site-packages/theano/compile/function_module.py",
> line 884, in __call__
>
>     self.fn() if output_subset is None else\
>
> AssertionError: Theano Assert failed!
>
> Apply node that caused the error: Assert{msg='Theano Assert
> failed!'}(GpuElemwise{Composite{tanh((i0 + i1))}}[(0, 0)].0,
> TensorConstant{False})
>
> Toposort index: 140
>
> Inputs types: [CudaNdarrayType(float32, 4D), TensorType(bool, scalar)]
>
> Inputs shapes: [(100, 1, 28, 28), ()]
>
> Inputs strides: [(784, 0, 28, 1), ()]
>
> Inputs values: ['not shown', array(False, dtype=bool)]
>
> Inputs type_num: ['', 0]
>
> Outputs clients: [[Assert{msg='Theano Assert failed!'}(Assert{msg='Theano
> Assert failed!'}.0, TensorConstant{False})]]
>
>
> Debugprint of the apply node:
>
> Assert{msg='Theano Assert failed!'} [id A] <CudaNdarrayType(float32, 4D)>
> ''
>
>  |GpuElemwise{Composite{tanh((i0 + i1))}}[(0, 0)] [id B]
> <CudaNdarrayType(float32, 4D)> ''
>
>  | |GpuDnnConvGradI{algo='none', inplace=True} [id C]
> <CudaNdarrayType(float32, 4D)> ''
>
>  | | |GpuContiguous [id D] <CudaNdarrayType(float32, 4D)> ''
>
>  | | | |filterbank [id E] <CudaNdarrayType(float32, 4D)>
>
>  | | |GpuContiguous [id F] <CudaNdarrayType(float32, 4D)> ''
>
>  | | | |GpuReshape{4} [id G] <CudaNdarrayType(float32, 4D)> ''
>
>  | | |   |GpuElemwise{Composite{(i0 * ((i1 + i2) + Abs((i1 + i2))))}}[(0,
> 1)] [id H] <CudaNdarrayType(float32, matrix)> ''
>
>  | | |   | |CudaNdarrayConstant{[[ 0.5]]} [id I] <CudaNdarrayType(float32,
> (True, True))>
>
>  | | |   | |GpuDot22 [id J] <CudaNdarrayType(float32, matrix)> ''
>
>  | | |   | | |GpuElemwise{Composite{(i0 * ((i1 + i2) + Abs((i1 +
> i2))))}}[(0, 1)] [id K] <CudaNdarrayType(float32, matrix)> ''
>
>  | | |   | | | |CudaNdarrayConstant{[[ 0.5]]} [id I]
> <CudaNdarrayType(float32, (True, True))>
>
>  | | |   | | | |GpuDot22 [id L] <CudaNdarrayType(float32, matrix)> ''
>
>  | | |   | | | | |GpuReshape{2} [id M] <CudaNdarrayType(float32, matrix)>
> ''
>
>  | | |   | | | | | |GpuJoin [id N] <CudaNdarrayType(float32, vector)> ''
>
>  | | |   | | | | | | |TensorConstant{0} [id O] <TensorType(int8, scalar)>
>
>  | | |   | | | | | | |GpuElemwise{Composite{(i0 * cos(i1))},no_inplace}
> [id P] <CudaNdarrayType(float32, vector)> ''
>
>  | | |   | | | | | | | |GpuElemwise{Composite{sqrt((i0 *
> log(i1)))},no_inplace} [id Q] <CudaNdarrayType(float32, vector)> ''
>
>  | | |   | | | | | | | | |CudaNdarrayConstant{[-2.]} [id R]
> <CudaNdarrayType(float32, (True,))>
>
>  | | |   | | | | | | | | |GpuSubtensor{:int64:} [id S]
> <CudaNdarrayType(float32, vector)> ''
>
>  | | |   | | | | | | | |   |GPU_mrg_uniform{CudaNdarrayType(float32,
> vector),inplace}.1 [id T] <CudaNdarrayType(float32, vector)> ''
>
>  | | |   | | | | | | | |   | |<CudaNdarrayType(float32, vector)> [id U]
> <CudaNdarrayType(float32, vector)>
>
>  | | |   | | | | | | | |   | |TensorConstant{(1,) of 1000} [id V]
> <TensorType(int64, (True,))>
>
>  | | |   | | | | | | | |   |Constant{500} [id W] <int64>
>
>  | | |   | | | | | | | |GpuElemwise{Mul}[(0, 1)] [id X]
> <CudaNdarrayType(float32, vector)> ''
>
>  | | |   | | | | | | |   |CudaNdarrayConstant{[ 6.28318548]} [id Y]
> <CudaNdarrayType(float32, (True,))>
>
>  | | |   | | | | | | |   |GpuSubtensor{int64::} [id Z]
> <CudaNdarrayType(float32, vector)> ''
>
>  | | |   | | | | | | |     |GPU_mrg_uniform{CudaNdarrayType(float32,
> vector),inplace}.1 [id T] <CudaNdarrayType(float32, vector)> ''
>
>  | | |   | | | | | | |     |Constant{500} [id W] <int64>
>
>  | | |   | | | | | | |GpuElemwise{Composite{(i0 * sin(i1))}}[(0, 0)] [id
> BA] <CudaNdarrayType(float32, vector)> ''
>
>  | | |   | | | | | |   |GpuElemwise{Composite{sqrt((i0 *
> log(i1)))},no_inplace} [id Q] <CudaNdarrayType(float32, vector)> ''
>
>  | | |   | | | | | |   |GpuElemwise{Mul}[(0, 1)] [id X]
> <CudaNdarrayType(float32, vector)> ''
>
>  | | |   | | | | | |TensorConstant{[100  10]} [id BB] <TensorType(int64,
> vector)>
>
>  | | |   | | | | |weights [id BC] <CudaNdarrayType(float32, matrix)>
>
>  | | |   | | | |GpuDimShuffle{x,0} [id BD] <CudaNdarrayType(float32, row)>
> ''
>
>  | | |   | | |   |bias [id BE] <CudaNdarrayType(float32, vector)>
>
>  | | |   | | |weights [id BF] <CudaNdarrayType(float32, matrix)>
>
>  | | |   | |GpuDimShuffle{x,0} [id BG] <CudaNdarrayType(float32, row)> ''
>
>
>  | | |   |   |bias [id BH] <CudaNdarrayType(float32, vector)>
>
>  | | |   |TensorConstant{[100  10  13  13]} [id BI] <TensorType(int64,
> vector)>
>
>  | | |GpuAllocEmpty [id BJ] <CudaNdarrayType(float32, 4D)> ''
>
>  | | | |TensorConstant{100} [id BK] <TensorType(int64, scalar)>
>
>  | | | |Shape_i{1} [id BL] <TensorType(int64, scalar)> ''
>
>  | | | | |filterbank [id E] <CudaNdarrayType(float32, 4D)>
>
>  | | | |TensorConstant{28} [id BM] <TensorType(int64, scalar)>
>
>  | | | |TensorConstant{28} [id BN] <TensorType(int64, scalar)>
>
>  | | |GpuDnnConvDesc{border_mode='valid', subsample=(2, 2),
> conv_mode='conv', precision='float32'} [id BO]
> <CDataType{cudnnConvolutionDescriptor_t}> ''
>
>  | | | |MakeVector{dtype='int64'} [id BP] <TensorType(int64, vector)> ''
>
>  | | | | |TensorConstant{100} [id BK] <TensorType(int64, scalar)>
>
>  | | | | |Shape_i{1} [id BL] <TensorType(int64, scalar)> ''
>
>  | | | | |TensorConstant{28} [id BM] <TensorType(int64, scalar)>
>
>  | | | | |TensorConstant{28} [id BN] <TensorType(int64, scalar)>
>
>  | | | |MakeVector{dtype='int64'} [id BQ] <TensorType(int64, vector)> ''
>
>  | | |   |Shape_i{0} [id BR] <TensorType(int64, scalar)> ''
>
>  | | |   | |filterbank [id E] <CudaNdarrayType(float32, 4D)>
>
>  | | |   |Shape_i{1} [id BL] <TensorType(int64, scalar)> ''
>
>  | | |   |Shape_i{2} [id BS] <TensorType(int64, scalar)> ''
>
>  | | |   | |filterbank [id E] <CudaNdarrayType(float32, 4D)>
>
>  | | |   |Shape_i{3} [id BT] <TensorType(int64, scalar)> ''
>
>  | | |     |filterbank [id E] <CudaNdarrayType(float32, 4D)>
>
>  | | |Constant{1.0} [id BU] <float32>
>
>  | | |Constant{0.0} [id BV] <float32>
>
>  | |GpuDimShuffle{x,0,x,x} [id BW] <CudaNdarrayType(float32, (True, False,
> True, True))> ''
>
>  |   |bias [id BX] <CudaNdarrayType(float32, vector)>
>
>  |TensorConstant{False} [id BY] <TensorType(bool, scalar)>
>
>
> Storage map footprint:
>
>  - <CudaNdarrayType(float32, matrix)>, Shared Input, Shape: (50000, 784),
> ElemSize: 4 Byte(s), TotalSize: 156800000 Byte(s)
>
>  - weights, Shared Input, Shape: (1200, 1690), ElemSize: 4 Byte(s),
> TotalSize: 8112000 Byte(s)
>
>  - weights, Shared Input, Shape: (1250, 1200), ElemSize: 4 Byte(s),
> TotalSize: 6000000 Byte(s)
>
>  - weights, Shared Input, Shape: (240, 1200), ElemSize: 4 Byte(s),
> TotalSize: 1152000 Byte(s)
>
>  - GpuElemwise{Composite{tanh((i0 + i1))}}[(0, 0)].0, Shape: (100, 1, 28,
> 28), ElemSize: 4 Byte(s), TotalSize: 313600 Byte(s)
>
>  - <CudaNdarrayType(float32, vector)>, Shared Input, Shape: (50000,),
> ElemSize: 4 Byte(s), TotalSize: 200000 Byte(s)
>
>  - weights, Shared Input, Shape: (10, 1200), ElemSize: 4 Byte(s),
> TotalSize: 48000 Byte(s)
>
>  - filterbank, Shared Input, Shape: (50, 20, 3, 3), ElemSize: 4 Byte(s),
> TotalSize: 36000 Byte(s)
>
>  - GpuContiguous.0, Shape: (50, 20, 3, 3), ElemSize: 4 Byte(s), TotalSize:
> 36000 Byte(s)
>
>  - bias, Shared Input, Shape: (1690,), ElemSize: 4 Byte(s), TotalSize:
> 6760 Byte(s)
>
>  - bias, Shared Input, Shape: (1200,), ElemSize: 4 Byte(s), TotalSize:
> 4800 Byte(s)
>
>  - bias, Shared Input, Shape: (1200,), ElemSize: 4 Byte(s), TotalSize:
> 4800 Byte(s)
>
>  - bias, Shared Input, Shape: (1200,), ElemSize: 4 Byte(s), TotalSize:
> 4800 Byte(s)
>
>  - GPU_mrg_uniform{CudaNdarrayType(float32, vector),inplace}.0, Shape:
> (996,), ElemSize: 4 Byte(s), TotalSize: 3984 Byte(s)
>
>  - <CudaNdarrayType(float32, vector)>, Shared Input, Shape: (996,),
> ElemSize: 4 Byte(s), TotalSize: 3984 Byte(s)
>
>  - filterbank, Shared Input, Shape: (20, 1, 5, 5), ElemSize: 4 Byte(s),
> TotalSize: 2000 Byte(s)
>
>  - weights, Shared Input, Shape: (240, 1), ElemSize: 4 Byte(s), TotalSize:
> 960 Byte(s)
>
>  - filterbank, Shared Input, Shape: (10, 1, 3, 3), ElemSize: 4 Byte(s),
> TotalSize: 360 Byte(s)
>
>  - bias, Shared Input, Shape: (50,), ElemSize: 4 Byte(s), TotalSize: 200
> Byte(s)
>
>  - GpuDimShuffle{x,0,x,x}.0, Shape: (1, 50, 1, 1), ElemSize: 4 Byte(s),
> TotalSize: 200 Byte(s)
>
>  - bias, Shared Input, Shape: (20,), ElemSize: 4 Byte(s), TotalSize: 80
> Byte(s)
>
>  - GpuDimShuffle{x,0,x,x}.0, Shape: (1, 20, 1, 1), ElemSize: 4 Byte(s),
> TotalSize: 80 Byte(s)
>
>  - MakeVector{dtype='int64'}.0, Shape: (6,), ElemSize: 8 Byte(s),
> TotalSize: 48 Byte(s)
>
>  - Join.0, Shape: (4,), ElemSize: 8 Byte(s), TotalSize: 32 Byte(s)
>
>  - TensorConstant{[100  20  12  12]}, Shape: (4,), ElemSize: 8 Byte(s),
> TotalSize: 32 Byte(s)
>
>  - TensorConstant{[100   1  28  28]}, Shape: (4,), ElemSize: 8 Byte(s),
> TotalSize: 32 Byte(s)
>
>  - TensorConstant{[100  10  13  13]}, Shape: (4,), ElemSize: 8 Byte(s),
> TotalSize: 32 Byte(s)
>
>  - TensorConstant{[100  28  28]}, Shape: (3,), ElemSize: 8 Byte(s),
> TotalSize: 24 Byte(s)
>
>  - TensorConstant{(2,) of 0}, Shape: (2,), ElemSize: 8 Byte(s), TotalSize:
> 16 Byte(s)
>
>  - TensorConstant{[ 100 1250]}, Shape: (2,), ElemSize: 8 Byte(s),
> TotalSize: 16 Byte(s)
>
>  - MakeVector{dtype='int64'}.0, Shape: (2,), ElemSize: 8 Byte(s),
> TotalSize: 16 Byte(s)
>
>  - TensorConstant{[100  10]}, Shape: (2,), ElemSize: 8 Byte(s), TotalSize:
> 16 Byte(s)
>
>  - MakeVector{dtype='int64'}.0, Shape: (2,), ElemSize: 8 Byte(s),
> TotalSize: 16 Byte(s)
>
>  - TensorConstant{(2,) of 2}, Shape: (2,), ElemSize: 8 Byte(s), TotalSize:
> 16 Byte(s)
>
>  - MakeVector{dtype='int64'}.0, Shape: (2,), ElemSize: 8 Byte(s),
> TotalSize: 16 Byte(s)
>
>  - TensorConstant{[100  -1]}, Shape: (2,), ElemSize: 8 Byte(s), TotalSize:
> 16 Byte(s)
>
>  - Constant{3}, Shape: (), ElemSize: 8 Byte(s), TotalSize: 8.0 Byte(s)
>
>  - Shape_i{1}.0, Shape: (), ElemSize: 8 Byte(s), TotalSize: 8.0 Byte(s)
>
>  - Constant{2}, Shape: (), ElemSize: 8 Byte(s), TotalSize: 8.0 Byte(s)
>
>  - Shape_i{1}.0, Shape: (), ElemSize: 8 Byte(s), TotalSize: 8.0 Byte(s)
>
>  - TensorConstant{-1}, Shape: (), ElemSize: 8 Byte(s), TotalSize: 8.0
> Byte(s)
>
>  - Subtensor{int64}.0, Shape: (), ElemSize: 8 Byte(s), TotalSize: 8.0
> Byte(s)
>
>  - Constant{0}, Shape: (), ElemSize: 8 Byte(s), TotalSize: 8.0 Byte(s)
>
>  - Assert{msg='The convolution would produce an invalid shape (dim[1] <
> 0).'}.0, Shape: (), ElemSize: 8 Byte(s), TotalSize: 8.0 Byte(s)
>
>  - Elemwise{mul,no_inplace}.0, Shape: (), ElemSize: 8 Byte(s), TotalSize:
> 8.0 Byte(s)
>
>  - index, Input, Shape: (), ElemSize: 8 Byte(s), TotalSize: 8.0 Byte(s)
>
>  - Constant{4}, Shape: (), ElemSize: 8 Byte(s), TotalSize: 8.0 Byte(s)
>
>  - TensorConstant{28}, Shape: (), ElemSize: 8 Byte(s), TotalSize: 8.0
> Byte(s)
>
>  - Assert{msg='The convolution would produce an invalid shape (dim[2] <=
> 0).'}.0, Shape: (), ElemSize: 8 Byte(s), TotalSize: 8.0 Byte(s)
>
>  - TensorConstant{12}, Shape: (), ElemSize: 8 Byte(s), TotalSize: 8.0
> Byte(s)
>
>  - Shape_i{0}.0, Shape: (), ElemSize: 8 Byte(s), TotalSize: 8.0 Byte(s)
>
>  - Assert{msg='The convolution would produce an invalid shape (dim[3] <=
> 0).'}.0, Shape: (), ElemSize: 8 Byte(s), TotalSize: 8.0 Byte(s)
>
>  - TensorConstant{28}, Shape: (), ElemSize: 8 Byte(s), TotalSize: 8.0
> Byte(s)
>
>  - Assert{msg='The convolution would produce an invalid shape (dim[1] <
> 0).'}.0, Shape: (), ElemSize: 8 Byte(s), TotalSize: 8.0 Byte(s)
>
>  - TensorConstant{(1,) of 1000}, Shape: (1,), ElemSize: 8 Byte(s),
> TotalSize: 8 Byte(s)
>
>  - Assert{msg='The convolution would produce an invalid shape (dim[2] <=
> 0).'}.0, Shape: (), ElemSize: 8 Byte(s), TotalSize: 8.0 Byte(s)
>
>  - Assert{msg='The convolution would produce an invalid shape (dim[3] <=
> 0).'}.0, Shape: (), ElemSize: 8 Byte(s), TotalSize: 8.0 Byte(s)
>
>  - Constant{1}, Shape: (), ElemSize: 8 Byte(s), TotalSize: 8.0 Byte(s)
>
>  - TensorConstant{(1,) of 100}, Shape: (1,), ElemSize: 8 Byte(s),
> TotalSize: 8 Byte(s)
>
>  - TensorConstant{5}, Shape: (), ElemSize: 8 Byte(s), TotalSize: 8.0
> Byte(s)
>
>  - TensorConstant{100}, Shape: (), ElemSize: 8 Byte(s), TotalSize: 8.0
> Byte(s)
>
>  - Constant{500}, Shape: (), ElemSize: 8 Byte(s), TotalSize: 8.0 Byte(s)
>
>  - TensorConstant{28}, Shape: (), ElemSize: 8 Byte(s), TotalSize: 8.0
> Byte(s)
>
>  - TensorConstant{28}, Shape: (), ElemSize: 8 Byte(s), TotalSize: 8.0
> Byte(s)
>
>  - Elemwise{Composite{(i0 + (((i1 + Composite{Switch(LT(i0, i1), i1,
> i0)}(i2, i3)) - Switch(LT(Composite{Switch(LT(i0, i1), i1,
> i0)}(Composite{Switch(GE(i0, i1), i1, i0)}(i4, i2), i3),
> Composite{Switch(LT(i0, i1), i1, i0)}(i2, i3)), Composite{Switch(LT(i0,
> i1), i1, i0)}(Composite{Switch(GE(i0, i1), i1, i0)}(i4, i2), i3),
> Composite{Switch(LT(i0, i1), i1, i0)}(i2, i3))) // i5))}}[(0, 2)].0, Shape:
> (), ElemSize: 8 Byte(s), TotalSize: 8.0 Byte(s)
>
>  - TensorConstant{1}, Shape: (), ElemSize: 8 Byte(s), TotalSize: 8.0
> Byte(s)
>
>  - Subtensor{int64}.0, Shape: (), ElemSize: 8 Byte(s), TotalSize: 8.0
> Byte(s)
>
>  - TensorConstant{0}, Shape: (), ElemSize: 8 Byte(s), TotalSize: 8.0
> Byte(s)
>
>  - Constant{5}, Shape: (), ElemSize: 8 Byte(s), TotalSize: 8.0 Byte(s)
>
>  - GpuSubtensor{int64}.0, Shape: (), ElemSize: 4 Byte(s), TotalSize: 4.0
> Byte(s)
>
>  - GpuCAReduce{add}{1,1}.0, Shape: (), ElemSize: 4 Byte(s), TotalSize: 4.0
> Byte(s)
>
>  - Constant{1.0}, Shape: (), ElemSize: 4 Byte(s), TotalSize: 4.0 Byte(s)
>
>  - CudaNdarrayConstant{[-2.]}, Shape: (1,), ElemSize: 4 Byte(s),
> TotalSize: 4 Byte(s)
>
>  - GpuSubtensor{int64}.0, Shape: (), ElemSize: 4 Byte(s), TotalSize: 4.0
> Byte(s)
>
>  - CudaNdarrayConstant{-0.5}, Shape: (), ElemSize: 4 Byte(s), TotalSize:
> 4.0 Byte(s)
>
>  - bias, Shared Input, Shape: (1,), ElemSize: 4 Byte(s), TotalSize: 4
> Byte(s)
>
>  - CudaNdarrayConstant{[[ 0.5]]}, Shape: (1, 1), ElemSize: 4 Byte(s),
> TotalSize: 4 Byte(s)
>
>  - CudaNdarrayConstant{0.5}, Shape: (), ElemSize: 4 Byte(s), TotalSize:
> 4.0 Byte(s)
>
>  - bias, Shared Input, Shape: (1,), ElemSize: 4 Byte(s), TotalSize: 4
> Byte(s)
>
>  - CudaNdarrayConstant{[ 6.28318548]}, Shape: (1,), ElemSize: 4 Byte(s),
> TotalSize: 4 Byte(s)
>
>  - CudaNdarrayConstant{[[[[ 0.5]]]]}, Shape: (1, 1, 1, 1), ElemSize: 4
> Byte(s), TotalSize: 4 Byte(s)
>
>  - Constant{0.0}, Shape: (), ElemSize: 4 Byte(s), TotalSize: 4.0 Byte(s)
>
>  - TensorConstant{10}, Shape: (), ElemSize: 1 Byte(s), TotalSize: 1.0
> Byte(s)
>
>  - TensorConstant{20}, Shape: (), ElemSize: 1 Byte(s), TotalSize: 1.0
> Byte(s)
>
>  - TensorConstant{0}, Shape: (), ElemSize: 1 Byte(s), TotalSize: 1.0
> Byte(s)
>
>  - TensorConstant{5}, Shape: (), ElemSize: 1 Byte(s), TotalSize: 1.0
> Byte(s)
>
>  - TensorConstant{3}, Shape: (), ElemSize: 1 Byte(s), TotalSize: 1.0
> Byte(s)
>
>  - TensorConstant{1}, Shape: (), ElemSize: 1 Byte(s), TotalSize: 1.0
> Byte(s)
>
>  - Elemwise{eq,no_inplace}.0, Shape: (), ElemSize: 1 Byte(s), TotalSize:
> 1.0 Byte(s)
>
>  - TensorConstant{50}, Shape: (), ElemSize: 1 Byte(s), TotalSize: 1.0
> Byte(s)
>
>  - Elemwise{eq,no_inplace}.0, Shape: (), ElemSize: 1 Byte(s), TotalSize:
> 1.0 Byte(s)
>
>  - Elemwise{eq,no_inplace}.0, Shape: (), ElemSize: 1 Byte(s), TotalSize:
> 1.0 Byte(s)
>
>  - Elemwise{eq,no_inplace}.0, Shape: (), ElemSize: 1 Byte(s), TotalSize:
> 1.0 Byte(s)
>
>  - TensorConstant{False}, Shape: (), ElemSize: 1 Byte(s), TotalSize: 1.0
> Byte(s)
>
>  TotalSize: 172726976.0 Byte(s) 0.161 GB
>
>  TotalSize inputs: 172377152.0 Byte(s) 0.161 GB
>
>
> HINT: Re-running with most Theano optimization disabled could give you a
> back-trace of when this node was created. This can be done with by setting
> the Theano flag 'optimizer=fast_compile'. If that does not work, Theano
> optimizations can be disabled with 'optimizer=None'.
>
> --
>
> ---
> You received this message because you are subscribed to the Google Groups
> "theano-users" group.
>
> To unsubscribe from this group and stop receiving emails from it, send an
> email to [email protected].
>
>
> For more options, visit https://groups.google.com/d/optout.
>
> --
>
> ---
> You received this message because you are subscribed to the Google Groups
> "theano-users" group.
> To unsubscribe from this group and stop receiving emails from it, send an
> email to [email protected].
> For more options, visit https://groups.google.com/d/optout.
>

-- 

--- 
You received this message because you are subscribed to the Google Groups 
"theano-users" group.
To unsubscribe from this group and stop receiving emails from it, send an email 
to [email protected].
For more options, visit https://groups.google.com/d/optout.

Reply via email to