Flink version: 1.10
Json:
```j
{
"database":"main_db",
"maxwell_ts":1590416550358000,
"table":"transaction_tab",
"data":{
"transaction_sn":"8888",
"parent_id":0,
"user_id":333,
"amount":555,
"reference_id":"666",
"status":3,
"transaction_type":3,
"merchant_id":2,
"update_time":1590416550,
"create_time":1590416550
}
}
```
我看文档里说,嵌套的json需要使用 jsonSchema 来定义Sechame
Leonard Xu <[email protected]> 于2020年5月26日周二 上午8:58写道:
> Hi, kk
>
> 使用的flink版本是多少?1.10可以不用声明format的,方便贴下一条json数据吗?我可以看看
>
>
> 祝好,
> Leonard Xu
>
>
> > 在 2020年5月26日,01:26,macia kk <[email protected]> 写道:
> >
> > 有哪位大佬帮我看下,谢谢
> >
> >
> > 尝试了很久,还是无法解析嵌套结构的Json
> >
> > Error
> >
> > Caused by: org.apache.flink.table.api.ValidationException: SQL
> > validation failed. From line 4, column 9 to line 4, column 31: Column
> > 'data.transaction_type' not found in any table
> > at org.apache.flink.table.planner.calcite.FlinkPlannerImpl.org
> $apache$flink$table$planner$calcite$FlinkPlannerImpl$$validate(FlinkPlannerImpl.scala:130)
> > at
> org.apache.flink.table.planner.calcite.FlinkPlannerImpl.validate(FlinkPlannerImpl.scala:105)
> > at
> org.apache.flink.table.planner.operations.SqlToOperationConverter.convert(SqlToOperationConverter.java:127)
> > at
> org.apache.flink.table.planner.operations.SqlToOperationConverter.convertSqlInsert(SqlToOperationConverter.java:342)
> > at
> org.apache.flink.table.planner.operations.SqlToOperationConverter.convert(SqlToOperationConverter.java:142)
> > at
> org.apache.flink.table.planner.delegation.ParserImpl.parse(ParserImpl.java:66)
> > at
> org.apache.flink.table.api.internal.TableEnvironmentImpl.sqlUpdate(TableEnvironmentImpl.java:484)
> > at
> com.shopee.data.ordermart.airpay_v3.AirpayV3Flink$.createPipeline(AirpayV3Flink.scala:133)
> > at
> com.shopee.data.ordermart.airpay_v3.AirpayV3Flink$.main(AirpayV3Flink.scala:39)
> > at
> com.shopee.data.ordermart.airpay_v3.AirpayV3Flink.main(AirpayV3Flink.scala)
> > at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
> > at
> sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
> > at
> sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
> > at java.lang.reflect.Method.invoke(Method.java:498)
> > at
> org.apache.flink.client.program.PackagedProgram.callMainMethod(PackagedProgram.java:321)
> >
> >
> > 嵌套Json 定义的 format 和 schema 如下:
> >
> > .withFormat(new Json()
> > .jsonSchema(
> > """{type: 'object',
> > | properties: {
> > | database: {
> > | type: 'string'
> > | },
> > | table: {
> > | type: 'string'
> > | },
> > | maxwell_ts: {
> > | type: 'integer'
> > | },
> > | data: {
> > | type: 'object',
> > | properties :{
> > | reference_id :{
> > | type: 'string'
> > | },
> > | transaction_type :{
> > | type: 'integer'
> > | },
> > | merchant_id :{
> > | type: 'integer'
> > | },
> > | create_time :{
> > | type: 'integer'
> > | },
> > | status :{
> > | type: 'integer'
> > | }
> > | }
> > | }
> > | }
> > | }
> > """.stripMargin.replaceAll("\n", " ")
> > )
> > )
> > .withSchema(new Schema()
> > .field("table", STRING())
> > .field("database", STRING())
> > .field("data", ROW(FIELD("reference_id",STRING()),
> > FIELD("transaction_type",INT()), FIELD("merchant_id",INT()),
> > FIELD("status",INT())))
> > //.field("event_time", BIGINT())
> > // .from("maxwell_ts")
> > //.rowtime(new Rowtime()
> > // //.timestampsFromField("ts" * 1000)
> > // .timestampsFromField("ts")
> > // .watermarksPeriodicBounded(60000)
> > //)
> > )
> >
> >
> > bsTableEnv.sqlUpdate("""INSERT INTO yyyyy
> > | SELECT `table`, `database`
> > | `data.reference_id`,
> > | `data.transaction_type`,
> > | `data.merchant_id`,
> > | `data.create_time`,
> > | `data.status`
> > | FROM xxxx""".stripMargin)
>
>