Flink version: 1.10

Json:
```j
{
    "database":"main_db",
    "maxwell_ts":1590416550358000,
    "table":"transaction_tab",
    "data":{
        "transaction_sn":"8888",
        "parent_id":0,
        "user_id":333,
        "amount":555,
        "reference_id":"666",
        "status":3,
        "transaction_type":3,
        "merchant_id":2,
        "update_time":1590416550,
        "create_time":1590416550
    }
}
```

我看文档里说,嵌套的json需要使用 jsonSchema 来定义Sechame



Leonard Xu <[email protected]> 于2020年5月26日周二 上午8:58写道:

> Hi, kk
>
> 使用的flink版本是多少?1.10可以不用声明format的,方便贴下一条json数据吗?我可以看看
>
>
> 祝好,
> Leonard Xu
>
>
> > 在 2020年5月26日,01:26,macia kk <[email protected]> 写道:
> >
> > 有哪位大佬帮我看下,谢谢
> >
> >
> > 尝试了很久,还是无法解析嵌套结构的Json
> >
> > Error
> >
> > Caused by: org.apache.flink.table.api.ValidationException: SQL
> > validation failed. From line 4, column 9 to line 4, column 31: Column
> > 'data.transaction_type' not found in any table
> >    at org.apache.flink.table.planner.calcite.FlinkPlannerImpl.org
> $apache$flink$table$planner$calcite$FlinkPlannerImpl$$validate(FlinkPlannerImpl.scala:130)
> >    at
> org.apache.flink.table.planner.calcite.FlinkPlannerImpl.validate(FlinkPlannerImpl.scala:105)
> >    at
> org.apache.flink.table.planner.operations.SqlToOperationConverter.convert(SqlToOperationConverter.java:127)
> >    at
> org.apache.flink.table.planner.operations.SqlToOperationConverter.convertSqlInsert(SqlToOperationConverter.java:342)
> >    at
> org.apache.flink.table.planner.operations.SqlToOperationConverter.convert(SqlToOperationConverter.java:142)
> >    at
> org.apache.flink.table.planner.delegation.ParserImpl.parse(ParserImpl.java:66)
> >    at
> org.apache.flink.table.api.internal.TableEnvironmentImpl.sqlUpdate(TableEnvironmentImpl.java:484)
> >    at
> com.shopee.data.ordermart.airpay_v3.AirpayV3Flink$.createPipeline(AirpayV3Flink.scala:133)
> >    at
> com.shopee.data.ordermart.airpay_v3.AirpayV3Flink$.main(AirpayV3Flink.scala:39)
> >    at
> com.shopee.data.ordermart.airpay_v3.AirpayV3Flink.main(AirpayV3Flink.scala)
> >    at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
> >    at
> sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
> >    at
> sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
> >    at java.lang.reflect.Method.invoke(Method.java:498)
> >    at
> org.apache.flink.client.program.PackagedProgram.callMainMethod(PackagedProgram.java:321)
> >
> >
> > 嵌套Json 定义的 format 和 schema 如下:
> >
> >      .withFormat(new Json()
> >        .jsonSchema(
> >         """{type: 'object',
> >           |  properties: {
> >           |      database: {
> >           |          type: 'string'
> >           |      },
> >           |      table: {
> >           |          type: 'string'
> >           |      },
> >           |      maxwell_ts: {
> >           |          type: 'integer'
> >           |      },
> >           |      data: {
> >           |          type: 'object',
> >           |          properties :{
> >           |              reference_id :{
> >           |                  type: 'string'
> >           |              },
> >           |              transaction_type :{
> >           |                  type: 'integer'
> >           |              },
> >           |              merchant_id :{
> >           |                  type: 'integer'
> >           |              },
> >           |              create_time :{
> >           |                  type: 'integer'
> >           |              },
> >           |              status :{
> >           |                  type: 'integer'
> >           |              }
> >           |          }
> >           |      }
> >           |   }
> >           | }
> >         """.stripMargin.replaceAll("\n", " ")
> >         )
> >      )
> >      .withSchema(new Schema()
> >        .field("table", STRING())
> >        .field("database", STRING())
> >        .field("data", ROW(FIELD("reference_id",STRING()),
> > FIELD("transaction_type",INT()), FIELD("merchant_id",INT()),
> > FIELD("status",INT())))
> >        //.field("event_time", BIGINT())
> >        //  .from("maxwell_ts")
> >        //.rowtime(new Rowtime()
> >        //  //.timestampsFromField("ts" * 1000)
> >        //  .timestampsFromField("ts")
> >        //  .watermarksPeriodicBounded(60000)
> >        //)
> >      )
> >
> >
> >    bsTableEnv.sqlUpdate("""INSERT INTO yyyyy
> >                           | SELECT `table`, `database`
> >                           |        `data.reference_id`,
> >                           |        `data.transaction_type`,
> >                           |        `data.merchant_id`,
> >                           |        `data.create_time`,
> >                           |        `data.status`
> >                           | FROM xxxx""".stripMargin)
>
>

回复