Flink version: 1.10
Json:
{
"database":"main_db",
"maxwell_ts":1590416550358000,
"table":"transaction_tab",
"data":{
"transaction_sn":"8888",
"parent_id":0,
"user_id":333,
"amount":555,
"reference_id":"666",
"status":3,
"transaction_type":3,
"merchant_id":2,
"update_time":1590416550,
"create_time":1590416550
}}
我看文档里说,嵌套的json需要使用 jsonSchema 来定义Sechame
macia kk <[email protected]> 于2020年5月26日周二 上午9:34写道:
> Flink version: 1.10
>
> Json:
> ```j
> {
> "database":"main_db",
> "maxwell_ts":1590416550358000,
> "table":"transaction_tab",
> "data":{
> "transaction_sn":"8888",
> "parent_id":0,
> "user_id":333,
> "amount":555,
> "reference_id":"666",
> "status":3,
> "transaction_type":3,
> "merchant_id":2,
> "update_time":1590416550,
> "create_time":1590416550
> }
> }
> ```
>
> 我看文档里说,嵌套的json需要使用 jsonSchema 来定义Sechame
>
>
>
> Leonard Xu <[email protected]> 于2020年5月26日周二 上午8:58写道:
>
>> Hi, kk
>>
>> 使用的flink版本是多少?1.10可以不用声明format的,方便贴下一条json数据吗?我可以看看
>>
>>
>> 祝好,
>> Leonard Xu
>>
>>
>> > 在 2020年5月26日,01:26,macia kk <[email protected]> 写道:
>> >
>> > 有哪位大佬帮我看下,谢谢
>> >
>> >
>> > 尝试了很久,还是无法解析嵌套结构的Json
>> >
>> > Error
>> >
>> > Caused by: org.apache.flink.table.api.ValidationException: SQL
>> > validation failed. From line 4, column 9 to line 4, column 31: Column
>> > 'data.transaction_type' not found in any table
>> > at org.apache.flink.table.planner.calcite.FlinkPlannerImpl.org
>> $apache$flink$table$planner$calcite$FlinkPlannerImpl$$validate(FlinkPlannerImpl.scala:130)
>> > at
>> org.apache.flink.table.planner.calcite.FlinkPlannerImpl.validate(FlinkPlannerImpl.scala:105)
>> > at
>> org.apache.flink.table.planner.operations.SqlToOperationConverter.convert(SqlToOperationConverter.java:127)
>> > at
>> org.apache.flink.table.planner.operations.SqlToOperationConverter.convertSqlInsert(SqlToOperationConverter.java:342)
>> > at
>> org.apache.flink.table.planner.operations.SqlToOperationConverter.convert(SqlToOperationConverter.java:142)
>> > at
>> org.apache.flink.table.planner.delegation.ParserImpl.parse(ParserImpl.java:66)
>> > at
>> org.apache.flink.table.api.internal.TableEnvironmentImpl.sqlUpdate(TableEnvironmentImpl.java:484)
>> > at
>> com.shopee.data.ordermart.airpay_v3.AirpayV3Flink$.createPipeline(AirpayV3Flink.scala:133)
>> > at
>> com.shopee.data.ordermart.airpay_v3.AirpayV3Flink$.main(AirpayV3Flink.scala:39)
>> > at
>> com.shopee.data.ordermart.airpay_v3.AirpayV3Flink.main(AirpayV3Flink.scala)
>> > at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
>> > at
>> sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
>> > at
>> sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
>> > at java.lang.reflect.Method.invoke(Method.java:498)
>> > at
>> org.apache.flink.client.program.PackagedProgram.callMainMethod(PackagedProgram.java:321)
>> >
>> >
>> > 嵌套Json 定义的 format 和 schema 如下:
>> >
>> > .withFormat(new Json()
>> > .jsonSchema(
>> > """{type: 'object',
>> > | properties: {
>> > | database: {
>> > | type: 'string'
>> > | },
>> > | table: {
>> > | type: 'string'
>> > | },
>> > | maxwell_ts: {
>> > | type: 'integer'
>> > | },
>> > | data: {
>> > | type: 'object',
>> > | properties :{
>> > | reference_id :{
>> > | type: 'string'
>> > | },
>> > | transaction_type :{
>> > | type: 'integer'
>> > | },
>> > | merchant_id :{
>> > | type: 'integer'
>> > | },
>> > | create_time :{
>> > | type: 'integer'
>> > | },
>> > | status :{
>> > | type: 'integer'
>> > | }
>> > | }
>> > | }
>> > | }
>> > | }
>> > """.stripMargin.replaceAll("\n", " ")
>> > )
>> > )
>> > .withSchema(new Schema()
>> > .field("table", STRING())
>> > .field("database", STRING())
>> > .field("data", ROW(FIELD("reference_id",STRING()),
>> > FIELD("transaction_type",INT()), FIELD("merchant_id",INT()),
>> > FIELD("status",INT())))
>> > //.field("event_time", BIGINT())
>> > // .from("maxwell_ts")
>> > //.rowtime(new Rowtime()
>> > // //.timestampsFromField("ts" * 1000)
>> > // .timestampsFromField("ts")
>> > // .watermarksPeriodicBounded(60000)
>> > //)
>> > )
>> >
>> >
>> > bsTableEnv.sqlUpdate("""INSERT INTO yyyyy
>> > | SELECT `table`, `database`
>> > | `data.reference_id`,
>> > | `data.transaction_type`,
>> > | `data.merchant_id`,
>> > | `data.create_time`,
>> > | `data.status`
>> > | FROM xxxx""".stripMargin)
>>
>>