Hi,
你可以尝试一下直接用DDL来定义source和format。比如你的数据的话,大概的DDL 类似于下面这样子:
create table my_source (
database varchar,
maxwell_ts bigint,
table varchar,
data row<
transaction_sn varchar,
parent_id int,
user_id int,
amount int,
reference_id varchar,
status int,
transaction_type int,
merchant_id int,
update_time int,
create_time int
>
) with (
...
)
macia kk <[email protected]> 于2020年5月26日周二 上午9:36写道:
> Flink version: 1.10
>
> Json:
>
> {
> "database":"main_db",
> "maxwell_ts":1590416550358000,
> "table":"transaction_tab",
> "data":{
> "transaction_sn":"8888",
> "parent_id":0,
> "user_id":333,
> "amount":555,
> "reference_id":"666",
> "status":3,
> "transaction_type":3,
> "merchant_id":2,
> "update_time":1590416550,
> "create_time":1590416550
> }}
>
>
> 我看文档里说,嵌套的json需要使用 jsonSchema 来定义Sechame
>
>
> macia kk <[email protected]> 于2020年5月26日周二 上午9:34写道:
>
> > Flink version: 1.10
> >
> > Json:
> > ```j
> > {
> > "database":"main_db",
> > "maxwell_ts":1590416550358000,
> > "table":"transaction_tab",
> > "data":{
> > "transaction_sn":"8888",
> > "parent_id":0,
> > "user_id":333,
> > "amount":555,
> > "reference_id":"666",
> > "status":3,
> > "transaction_type":3,
> > "merchant_id":2,
> > "update_time":1590416550,
> > "create_time":1590416550
> > }
> > }
> > ```
> >
> > 我看文档里说,嵌套的json需要使用 jsonSchema 来定义Sechame
> >
> >
> >
> > Leonard Xu <[email protected]> 于2020年5月26日周二 上午8:58写道:
> >
> >> Hi, kk
> >>
> >> 使用的flink版本是多少?1.10可以不用声明format的,方便贴下一条json数据吗?我可以看看
> >>
> >>
> >> 祝好,
> >> Leonard Xu
> >>
> >>
> >> > 在 2020年5月26日,01:26,macia kk <[email protected]> 写道:
> >> >
> >> > 有哪位大佬帮我看下,谢谢
> >> >
> >> >
> >> > 尝试了很久,还是无法解析嵌套结构的Json
> >> >
> >> > Error
> >> >
> >> > Caused by: org.apache.flink.table.api.ValidationException: SQL
> >> > validation failed. From line 4, column 9 to line 4, column 31: Column
> >> > 'data.transaction_type' not found in any table
> >> > at org.apache.flink.table.planner.calcite.FlinkPlannerImpl.org
> >>
> $apache$flink$table$planner$calcite$FlinkPlannerImpl$$validate(FlinkPlannerImpl.scala:130)
> >> > at
> >>
> org.apache.flink.table.planner.calcite.FlinkPlannerImpl.validate(FlinkPlannerImpl.scala:105)
> >> > at
> >>
> org.apache.flink.table.planner.operations.SqlToOperationConverter.convert(SqlToOperationConverter.java:127)
> >> > at
> >>
> org.apache.flink.table.planner.operations.SqlToOperationConverter.convertSqlInsert(SqlToOperationConverter.java:342)
> >> > at
> >>
> org.apache.flink.table.planner.operations.SqlToOperationConverter.convert(SqlToOperationConverter.java:142)
> >> > at
> >>
> org.apache.flink.table.planner.delegation.ParserImpl.parse(ParserImpl.java:66)
> >> > at
> >>
> org.apache.flink.table.api.internal.TableEnvironmentImpl.sqlUpdate(TableEnvironmentImpl.java:484)
> >> > at
> >>
> com.shopee.data.ordermart.airpay_v3.AirpayV3Flink$.createPipeline(AirpayV3Flink.scala:133)
> >> > at
> >>
> com.shopee.data.ordermart.airpay_v3.AirpayV3Flink$.main(AirpayV3Flink.scala:39)
> >> > at
> >>
> com.shopee.data.ordermart.airpay_v3.AirpayV3Flink.main(AirpayV3Flink.scala)
> >> > at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
> >> > at
> >>
> sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
> >> > at
> >>
> sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
> >> > at java.lang.reflect.Method.invoke(Method.java:498)
> >> > at
> >>
> org.apache.flink.client.program.PackagedProgram.callMainMethod(PackagedProgram.java:321)
> >> >
> >> >
> >> > 嵌套Json 定义的 format 和 schema 如下:
> >> >
> >> > .withFormat(new Json()
> >> > .jsonSchema(
> >> > """{type: 'object',
> >> > | properties: {
> >> > | database: {
> >> > | type: 'string'
> >> > | },
> >> > | table: {
> >> > | type: 'string'
> >> > | },
> >> > | maxwell_ts: {
> >> > | type: 'integer'
> >> > | },
> >> > | data: {
> >> > | type: 'object',
> >> > | properties :{
> >> > | reference_id :{
> >> > | type: 'string'
> >> > | },
> >> > | transaction_type :{
> >> > | type: 'integer'
> >> > | },
> >> > | merchant_id :{
> >> > | type: 'integer'
> >> > | },
> >> > | create_time :{
> >> > | type: 'integer'
> >> > | },
> >> > | status :{
> >> > | type: 'integer'
> >> > | }
> >> > | }
> >> > | }
> >> > | }
> >> > | }
> >> > """.stripMargin.replaceAll("\n", " ")
> >> > )
> >> > )
> >> > .withSchema(new Schema()
> >> > .field("table", STRING())
> >> > .field("database", STRING())
> >> > .field("data", ROW(FIELD("reference_id",STRING()),
> >> > FIELD("transaction_type",INT()), FIELD("merchant_id",INT()),
> >> > FIELD("status",INT())))
> >> > //.field("event_time", BIGINT())
> >> > // .from("maxwell_ts")
> >> > //.rowtime(new Rowtime()
> >> > // //.timestampsFromField("ts" * 1000)
> >> > // .timestampsFromField("ts")
> >> > // .watermarksPeriodicBounded(60000)
> >> > //)
> >> > )
> >> >
> >> >
> >> > bsTableEnv.sqlUpdate("""INSERT INTO yyyyy
> >> > | SELECT `table`, `database`
> >> > | `data.reference_id`,
> >> > | `data.transaction_type`,
> >> > | `data.merchant_id`,
> >> > | `data.create_time`,
> >> > | `data.status`
> >> > | FROM xxxx""".stripMargin)
> >>
> >>
>
--
Best,
Benchao Li