Hello, I am trying to understand how to work the Cauchy integral inputs and replicate the results of a published example:
.e.g. Compute the integral of e^(z^2) / (z-2) assumes C is closed (anticlockwise) and z=2 is inside C (a simple circle). The solution should be 2*pi*i*f(2) = 2*pi*i*e^4 In Scilab, the solution is defined from the Cauchy Integral (intl): y = intl(a, b, z0, r, f) a and b are real and z complex function y=f(z) y = exp((z^2)) // solution uses f(z) = e^(z^2) endfunction fz=intl(0, 2*%pi, 2+0*%i, 1, f) // gives round-off error // z position +2(real z), 0(imaginary z) Probably not setting up the inputs correctly; any guidance would be helpful. All a learning exercise. Thanks Lester
_______________________________________________ users mailing list users@lists.scilab.org http://lists.scilab.org/mailman/listinfo/users