I'm trying to figure out how to make this better.
The standard TS-2000 expects hardware flow control.
Most all simulators of the TS-2000 probably do not.

So perhaps make two TS-2000 entries -- the 2nd one "TS-2000 No Flow".
That way the default choice for flow control in WSJT-X will still work.

And I can make the error a bit better now on a timeout....

"Time out can indicate wrong com port, baud, handshake, or rig entry."
Then either:
"Try Handshake=None" -- this can also say "Try TS-2000 No Flow rig entry" if 
TS-2000 is selected.
or
"Try Handshake=Hardware" -- not sure we need an alternate here.


Mike W9MDB







On Thursday, July 4, 2024 at 09:41:34 AM CDT, Noten2010 via wsjt-devel 
<wsjt-devel@lists.sourceforge.net> wrote: 






Hi all,

Many thanks for all interesting emails about how to find the reason why my 
TS2000 only wanted to TX and no more RX when using the latest wsjtX270rc5 
release.

I still don't know how to create the wanted debug file, so I started some 
experiments after I finally worked this morning K8K for a nice ATNO.

Now I realise that my TS2000 is not coupled directly via RS232 or whatever, but 
via a microHAM USB Device Router v 9.3.5 , so my setup was not representative 
for all standard TS2000 situations.

I went back to the new hamlib 4.6 dll and played with handshake settings, those 
were left at "default" for years.


When I now set handshake to NONE, both dll's work fine. (4.5.4 and 4.6)


So I guess there is no further need to investigate that dll,  just don't use 
hardware handshaking and all is fine.

Have fun with our hobby and thanks for all developments !!

73 de Joop PA0JMV





Op 2024-07-03 om 20:03 schreef Noten2010:


>  
Hi Friends,

Many thanks for some good and fast replies with ideas to my question. Now 
version 2.7.0 rc5 is working fine with a previous libhamlib-4.dll that was 
installed by version 2.6.1 ( I suppose).

I simply copied the older v2.6.1 libhamlib-4.dll (dated 2023-JAN-10) into the 
new directory created by version 270 rc5 and all seems to work fine with my CAT 
and TS2000.

Thanks for all support, u made me happy agn.

Best 73 GL,

Joop PA0JMV 



_______________________________________________
wsjt-devel mailing list
wsjt-devel@lists.sourceforge.net
https://lists.sourceforge.net/lists/listinfo/wsjt-devel
#include "HamlibTransceiver.hpp"

#include <cstring>
#include <cmath>
#include <tuple>
#include <QByteArray>
#include <QString>
#include <QStandardPaths>
#include <QFile>
#include <QTimer>
#include <QJsonDocument>
#include <QJsonObject>
#include <QJsonValue>
#include <QDebug>
#include <hamlib/rig.h>
#include "pimpl_impl.hpp"
#include "moc_HamlibTransceiver.cpp"

#if HAVE_HAMLIB_OLD_CACHING
#define HAMLIB_CACHE_ALL CACHE_ALL
#endif

namespace
{
  // Unfortunately bandwidth is conflated  with mode, this is probably
  // because Icom do  the same. So we have to  care about bandwidth if
  // we want  to set  mode otherwise we  will end up  setting unwanted
  // bandwidths every time we change mode.  The best we can do via the
  // Hamlib API is to request the  normal option for the mode and hope
  // that an appropriate filter is selected.  Also ensure that mode is
  // only set is absolutely necessary.  On Icoms (and probably others)
  // the filter is  selected by number without checking  the actual BW
  // so unless the  "normal" defaults are set on the  rig we won't get
  // desirable results.
  //
  // As  an ultimate  workaround make  sure  the user  always has  the
  // option to skip mode setting altogether.

  // callback function that receives transceiver capabilities from the
  // hamlib libraries
  int register_callback (rig_model_t rig_model, void * callback_data)
  {
    TransceiverFactory::Transceivers * rigs = 
reinterpret_cast<TransceiverFactory::Transceivers *> (callback_data);
    // We can't use this one because it is only for testing Hamlib and
    // would confuse users, possibly causing operating on the wrong
    // frequency!
#ifdef RIG_MODEL_DUMMY_NOVFO
    if (RIG_MODEL_DUMMY_NOVFO == rig_model)
      {
        return 1;
      }
#endif

    QString key;
    if (RIG_MODEL_DUMMY == rig_model)
      {
        key = TransceiverFactory::basic_transceiver_name_;
      }
    else
      {
        key = QString::fromLatin1 (rig_get_caps_cptr (rig_model, 
RIG_CAPS_MFG_NAME_CPTR)).trimmed ()
          + ' '+ QString::fromLatin1 (rig_get_caps_cptr (rig_model, 
RIG_CAPS_MODEL_NAME_CPTR)).trimmed ()
          // + ' '+ QString::fromLatin1 (rig_get_caps_cptr (rig_model, 
RIG_CAPS_VERSION)).trimmed ()
          // + " (" + QString::fromLatin1 (rig_get_caps_cptr (rig_model, 
RIG_CAPS_STATUS)).trimmed () + ')'
          ;
      }

    auto port_type = TransceiverFactory::Capabilities::none;
    switch(rig_get_caps_int (rig_model, RIG_CAPS_PORT_TYPE))
      {
      case RIG_PORT_SERIAL:
        port_type = TransceiverFactory::Capabilities::serial;
        break;

      case RIG_PORT_NETWORK:
        port_type = TransceiverFactory::Capabilities::network;
        break;

      case RIG_PORT_USB:
        port_type = TransceiverFactory::Capabilities::usb;
        break;

      default: break;
      }
          auto ptt_type = rig_get_caps_int (rig_model, RIG_CAPS_PTT_TYPE);
    (*rigs)[key] = TransceiverFactory::Capabilities (rig_model
                                                     , port_type
                                                     , RIG_MODEL_DUMMY != 
rig_model
                                                     && (RIG_PTT_RIG == ptt_type
                                                         || RIG_PTT_RIG_MICDATA 
== ptt_type)
                                                     , RIG_PTT_RIG_MICDATA == 
ptt_type);

    return 1;                   // keep them coming
  }

  int unregister_callback (rig_model_t rig_model, void *)
  {
    rig_unregister (rig_get_caps_int (rig_model, RIG_CAPS_RIG_MODEL));
    return 1;                   // keep them coming
  }

  // int frequency_change_callback (RIG * /* rig */, vfo_t vfo, freq_t f, 
rig_ptr_t arg)
  // {
  //   (void)vfo;                       // unused in release build

  //   Q_ASSERT (vfo == RIG_VFO_CURR); // G4WJS: at the time of writing only 
current VFO is signalled by hamlib

  //   HamlibTransceiver * transceiver (reinterpret_cast<HamlibTransceiver *> 
(arg));
  //   Q_EMIT transceiver->frequency_change (f, Transceiver::A);
  //   return RIG_OK;
  // }

  class hamlib_tx_vfo_fixup final
  {
  public:
    hamlib_tx_vfo_fixup (RIG * rig, vfo_t tx_vfo)
      : rig_ {rig}
    {
      original_vfo_ = rig_->state.tx_vfo;
      rig_->state.tx_vfo = tx_vfo;
    }

    ~hamlib_tx_vfo_fixup ()
    {
      rig_->state.tx_vfo = original_vfo_;
    }

  private:
    RIG * rig_;
    vfo_t original_vfo_;
  };
}

class HamlibTransceiver::impl final
{
public:
  impl (HamlibTransceiver::logger_type * logger)
    : logger_ {logger}
    , model_ {RIG_MODEL_DUMMY}
    , rig_ {rig_init (model_)}
    , ptt_only_ {true}
    , back_ptt_port_ {false}
    , one_VFO_ {false}
    , is_dummy_ {true}
    , reversed_ {false}
    , freq_query_works_ {true}
    , mode_query_works_ {true}
    , split_query_works_ {true}
    , tickle_hamlib_ {false}
    , get_vfo_works_ {true}
    , set_vfo_works_ {true}
    , do_snr_ {false}
    , do_pwr_ {false}
    , do_pwr2_ {false}
    , do_swr_ {false}
  {
  }

  impl (HamlibTransceiver::logger_type * logger, unsigned model_number
        , TransceiverFactory::ParameterPack const& params)
    :  logger_ {logger}
    , model_ {model_number}
    , rig_ {rig_init (model_)}
    , ptt_only_ {false}
    , back_ptt_port_ {TransceiverFactory::TX_audio_source_rear == 
params.audio_source}
    , one_VFO_ {false}
    , is_dummy_ {RIG_MODEL_DUMMY == model_}
    , reversed_ {false}
    , freq_query_works_ {rig_ && rig_get_function_ptr (model_, 
RIG_FUNCTION_GET_FREQ)}
    , mode_query_works_ {rig_ && rig_get_function_ptr (model_, 
RIG_FUNCTION_GET_MODE)}
    , split_query_works_ {rig_ && rig_get_function_ptr (model_, 
RIG_FUNCTION_GET_SPLIT_VFO)}
    , tickle_hamlib_ {false}
    , get_vfo_works_ {true}
    , set_vfo_works_ {true}
    , do_snr_ {false}
    , do_pwr_ {false}
    , do_pwr2_ {false}
    , do_swr_ {false}
  {
  }

  HamlibTransceiver::logger_type& logger () const
  {
    return *logger_;
  }

  void error_check (int ret_code, QString const& doing) const;
  void set_conf (char const * item, char const * value);
  QByteArray get_conf (char const * item);
  Transceiver::MODE map_mode (rmode_t) const;
  rmode_t map_mode (Transceiver::MODE mode) const;
  std::tuple<vfo_t, vfo_t> get_vfos (bool for_split) const;

  HamlibTransceiver::logger_type mutable * logger_;
  unsigned model_;
  struct RIGDeleter {static void cleanup (RIG *);};
  QScopedPointer<RIG, RIGDeleter> rig_;

  bool ptt_only_;               // we can use a dummy device for PTT
  bool back_ptt_port_;
  bool one_VFO_;
  bool is_dummy_;

  // these are saved on destruction so we can start new instances
  // where the last one left off
  static freq_t dummy_frequency_;
  static rmode_t dummy_mode_;

  bool mutable reversed_;

  bool freq_query_works_;
  bool mode_query_works_;
  bool split_query_works_;
  bool tickle_hamlib_;          // Hamlib requires a
                                // rig_set_split_vfo() call to
                                // establish the Tx VFO
  bool get_vfo_works_;          // Net rigctl promises what it can't deliver
  bool set_vfo_works_;          // More rigctl promises which it can't deliver
  bool do_snr_;
  bool do_pwr_;
  bool do_pwr2_;
  bool do_swr_;

  static int debug_callback (enum rig_debug_level_e level, rig_ptr_t arg, char 
const * format, va_list ap);
};

freq_t HamlibTransceiver::impl::dummy_frequency_;
rmode_t HamlibTransceiver::impl::dummy_mode_ {RIG_MODE_NONE};

  // reroute Hamlib diagnostic messages to Qt
int HamlibTransceiver::impl::debug_callback (enum rig_debug_level_e level, 
rig_ptr_t arg, char const * format, va_list ap)
{
  auto logger = reinterpret_cast<logger_type *> (arg);
  auto message = QString::vasprintf (format, ap);
  va_end (ap);
  auto severity = boost::log::trivial::trace;
  switch (level)
    {
    case RIG_DEBUG_BUG: severity = boost::log::trivial::fatal; break;
    case RIG_DEBUG_ERR: severity = boost::log::trivial::error; break;
    case RIG_DEBUG_WARN: severity = boost::log::trivial::warning; break;
    case RIG_DEBUG_VERBOSE: severity = boost::log::trivial::debug; break;
    case RIG_DEBUG_TRACE: severity = boost::log::trivial::trace; break;
    default: break;
    };
  if (level != RIG_DEBUG_NONE) // no idea what level NONE means so
    // ignore it
    {
      BOOST_LOG_SEV (*logger, severity) << message.trimmed ().toStdString ();
    }
  return 0;
}

void HamlibTransceiver::register_transceivers (logger_type * logger,
                                               TransceiverFactory::Transceivers 
* registry)
{
  rig_set_debug_callback (impl::debug_callback, logger);
  rig_set_debug (RIG_DEBUG_TRACE);
  BOOST_LOG_SEV (*logger, boost::log::trivial::info) << "Hamlib version: " << 
rig_version ();
  rig_load_all_backends ();
  rig_list_foreach_model (register_callback, registry);
}

void HamlibTransceiver::unregister_transceivers ()
{
  rig_list_foreach_model (unregister_callback, nullptr);
}

void HamlibTransceiver::impl::RIGDeleter::cleanup (RIG * rig)
{
  if (rig)
    {
      rig_cleanup (rig);
    }
}

void HamlibTransceiver::impl::error_check (int ret_code, QString const& doing) 
const
{
  if (RIG_OK != ret_code)
    {
      CAT_ERROR ("error: " << rigerror (ret_code));
      throw error {tr ("Hamlib error: %1 while %2").arg (rigerror 
(ret_code)).arg (doing)};
    }
}

std::tuple<vfo_t, vfo_t> HamlibTransceiver::impl::get_vfos (bool for_split) 
const
{
  if (get_vfo_works_ && rig_get_function_ptr (model_, RIG_FUNCTION_GET_VFO))
    {
      vfo_t v;
      error_check (rig_get_vfo (rig_.data (), &v), tr ("getting current VFO")); 
// has side effect of establishing current VFO inside hamlib
      CAT_TRACE ("rig_get_vfo VFO=" << rig_strvfo (v));

      reversed_ = RIG_VFO_B == v;
    }
  else if (!for_split && set_vfo_works_ && rig_get_function_ptr (model_, 
RIG_FUNCTION_SET_VFO) && rig_get_function_ptr (model_, 
RIG_FUNCTION_SET_SPLIT_VFO))
    {
      // use VFO A/MAIN for main frequency and B/SUB for Tx
      // frequency if split since these type of radios can only
      // support this way around

      CAT_TRACE ("rig_set_vfo VFO=A/MAIN");
      error_check (rig_set_vfo (rig_.data (), rig_->state.vfo_list & RIG_VFO_A 
? RIG_VFO_A : RIG_VFO_MAIN), tr ("setting current VFO"));
    }
  // else only toggle available but VFOs should be substitutable 

  auto rx_vfo = rig_->state.vfo_list & RIG_VFO_A ? RIG_VFO_A : RIG_VFO_MAIN;
  auto tx_vfo = (WSJT_RIG_NONE_CAN_SPLIT || !is_dummy_) && for_split
    ? (rig_->state.vfo_list & RIG_VFO_B ? RIG_VFO_B : RIG_VFO_SUB)
    : rx_vfo;
  if (reversed_)
    {
      CAT_TRACE ("reversing VFOs");
      std::swap (rx_vfo, tx_vfo);
    }

  CAT_TRACE ("RX VFO=" << rig_strvfo (rx_vfo) << " TX VFO=" << rig_strvfo 
(tx_vfo));
  return std::make_tuple (rx_vfo, tx_vfo);
}

void HamlibTransceiver::impl::set_conf (char const * item, char const * value)
{
  token_t token = rig_token_lookup (rig_.data (), item);
  if (RIG_CONF_END != token)    // only set if valid for rig model
    {
      error_check (rig_set_conf (rig_.data (), token, value), tr ("setting a 
configuration item"));
    }
}

QByteArray HamlibTransceiver::impl::get_conf (char const * item)
{
  token_t token = rig_token_lookup (rig_.data (), item);
  QByteArray value {128, '\0'};
  if (RIG_CONF_END != token)    // only get if valid for rig model
    {
      error_check (rig_get_conf (rig_.data (), token, value.data ()), tr 
("getting a configuration item"));
    }
  return value;
}

auto HamlibTransceiver::impl::map_mode (rmode_t m) const -> MODE
{
  switch (m)
    {
    case RIG_MODE_AM:
    case RIG_MODE_SAM:
    case RIG_MODE_AMS:
    case RIG_MODE_DSB:
      return AM;

    case RIG_MODE_CW:
      return CW;

    case RIG_MODE_CWR:
      return CW_R;

    case RIG_MODE_USB:
    case RIG_MODE_ECSSUSB:
    case RIG_MODE_SAH:
    case RIG_MODE_FAX:
      return USB;

    case RIG_MODE_LSB:
    case RIG_MODE_ECSSLSB:
    case RIG_MODE_SAL:
      return LSB;

    case RIG_MODE_RTTY:
      return FSK;

    case RIG_MODE_RTTYR:
      return FSK_R;

    case RIG_MODE_PKTLSB:
      return DIG_L;

    case RIG_MODE_PKTUSB:
      return DIG_U;

    case RIG_MODE_FM:
    case RIG_MODE_WFM:
      return FM;

    case RIG_MODE_PKTFM:
      return DIG_FM;

    default:
      return UNK;
    }
}

rmode_t HamlibTransceiver::impl::map_mode (MODE mode) const
{
  switch (mode)
    {
    case AM: return RIG_MODE_AM;
    case CW: return RIG_MODE_CW;
    case CW_R: return RIG_MODE_CWR;
    case USB: return RIG_MODE_USB;
    case LSB: return RIG_MODE_LSB;
    case FSK: return RIG_MODE_RTTY;
    case FSK_R: return RIG_MODE_RTTYR;
    case DIG_L: return RIG_MODE_PKTLSB;
    case DIG_U: return RIG_MODE_PKTUSB;
    case FM: return RIG_MODE_FM;
    case DIG_FM: return RIG_MODE_PKTFM;
    default: break;
    }
  return RIG_MODE_USB;  // quieten compiler grumble
}

HamlibTransceiver::HamlibTransceiver (logger_type * logger,
                                      TransceiverFactory::PTTMethod ptt_type, 
QString const& ptt_port,
                                      QObject * parent)
  : PollingTransceiver {logger, 0, parent}
  , m_ {logger}
{
  if (!m_->rig_)
    {
      throw error {tr ("Hamlib initialisation error")};
    }
  switch (ptt_type)
    {
    case TransceiverFactory::PTT_method_VOX:
      m_->set_conf ("ptt_type", "None");
      break;

    case TransceiverFactory::PTT_method_CAT:
      // Use the default PTT_TYPE for the rig (defined in the Hamlib
      // rig back-end capabilities).
      break;

    case TransceiverFactory::PTT_method_DTR:
    case TransceiverFactory::PTT_method_RTS:
      if (!ptt_port.isEmpty ())
        {
#if defined (WIN32)
          m_->set_conf ("ptt_pathname", ("\\\\.\\" + ptt_port).toLatin1 ().data 
());
#else
          m_->set_conf ("ptt_pathname", ptt_port.toLatin1 ().data ());
#endif
        }

      if (TransceiverFactory::PTT_method_DTR == ptt_type)
        {
          m_->set_conf ("ptt_type", "DTR");
        }
      else
        {
          m_->set_conf ("ptt_type", "RTS");
        }
      m_->set_conf ("ptt_share", "1");
    }

  // do this late to allow any configuration option to be overriden
  load_user_settings ();
}

HamlibTransceiver::HamlibTransceiver (logger_type * logger,
                                      unsigned model_number,
                                      TransceiverFactory::ParameterPack const& 
params,
                                      QObject * parent)
  : PollingTransceiver {logger, params.poll_interval, parent}
  , m_ {logger, model_number, params}
{
  if (!m_->rig_)
    {
      throw error {tr ("Hamlib initialisation error")};
    }

  // m_->rig_->state.obj = this;

  if (!m_->is_dummy_)
    {
      // printf("Hamlib open params: power_on=%d power_off=%d 
ptt_share=%d\n",(params.poll_interval & rig__power) == 
rig__power,(params.poll_interval & rig__power_off) == 
rig__power_off,(params.poll_interval & ptt__share) == ptt__share);
      if (params.poll_interval & do__pwr) { do_pwr_ = true; do_pwr2_ = true; 
do_swr_ = true;}

      switch (rig_get_caps_int (m_->model_, RIG_CAPS_PORT_TYPE))
        {
        case RIG_PORT_SERIAL:
          if (!params.serial_port.isEmpty ())
            {
              m_->set_conf ("rig_pathname", params.serial_port.toLatin1 ().data 
());
            }
          m_->set_conf ("serial_speed", QByteArray::number (params.baud).data 
());
          if (params.data_bits != TransceiverFactory::default_data_bits)
            {
              m_->set_conf ("data_bits", TransceiverFactory::seven_data_bits == 
params.data_bits ? "7" : "8");
            }
          if (params.stop_bits != TransceiverFactory::default_stop_bits)
            {
              m_->set_conf ("stop_bits", TransceiverFactory::one_stop_bit == 
params.stop_bits ? "1" : "2");
            }

          switch (params.handshake)
            {
            case TransceiverFactory::handshake_none: m_->set_conf 
("serial_handshake", "None"); break;
            case TransceiverFactory::handshake_XonXoff: m_->set_conf 
("serial_handshake", "XONXOFF"); break;
            case TransceiverFactory::handshake_hardware: m_->set_conf 
("serial_handshake", "Hardware"); break;
            default: break;
            }

          if (params.force_dtr)
            {
              m_->set_conf ("dtr_state", params.dtr_high ? "ON" : "OFF");
            }
          if (params.force_rts)
            {
              if (TransceiverFactory::handshake_hardware != params.handshake)
                {
                  m_->set_conf ("rts_state", params.rts_high ? "ON" : "OFF");
                }
            }
          break;

        case RIG_PORT_NETWORK:
          if (!params.network_port.isEmpty ())
            {
              m_->set_conf ("rig_pathname", params.network_port.toLatin1 
().data ());
            }
          break;

        case RIG_PORT_USB:
          if (!params.usb_port.isEmpty ())
            {
              m_->set_conf ("rig_pathname", params.usb_port.toLatin1 ().data 
());
            }
          break;

        default:
          throw error {tr ("Unsupported CAT type")};
          break;
        }
    }

  switch (params.ptt_type)
    {
    case TransceiverFactory::PTT_method_VOX:
      m_->set_conf ("ptt_type", "None");
      break;

    case TransceiverFactory::PTT_method_CAT:
      // Use the default PTT_TYPE for the rig (defined in the Hamlib
      // rig back-end capabilities).
      break;

    case TransceiverFactory::PTT_method_DTR:
    case TransceiverFactory::PTT_method_RTS:
      if (params.ptt_port.size ()
          && params.ptt_port != "None"
          && (m_->is_dummy_
              || RIG_PORT_SERIAL != rig_get_caps_int (m_->model_, 
RIG_CAPS_PORT_TYPE)
              || params.ptt_port != params.serial_port))
        {
#if defined (WIN32)
          m_->set_conf ("ptt_pathname", ("\\\\.\\" + params.ptt_port).toLatin1 
().data ());
#else
          m_->set_conf ("ptt_pathname", params.ptt_port.toLatin1 ().data ());
#endif
        }

      if (TransceiverFactory::PTT_method_DTR == params.ptt_type)
        {
          m_->set_conf ("ptt_type", "DTR");
        }
      else
        {
          m_->set_conf ("ptt_type", "RTS");
        }
      m_->set_conf ("ptt_share", "1");
    }

  // Make Icom CAT split commands less glitchy
  m_->set_conf ("no_xchg", "1");

  // do this late to allow any configuration option to be overriden
  load_user_settings ();

  // would be nice to get events but not supported on Windows and also not on a 
lot of rigs
  // rig_set_freq_callback (m_->rig_.data (), &frequency_change_callback, this);
}

HamlibTransceiver::~HamlibTransceiver () = default;

void HamlibTransceiver::load_user_settings ()
{
  //
  // user defined Hamlib settings
  //
  auto settings_file_name = QStandardPaths::locate 
(QStandardPaths::AppConfigLocation
                                                    , "hamlib_settings.json");
  if (!settings_file_name.isEmpty ())
    {
      QFile settings_file {settings_file_name};
      qDebug () << "Using Hamlib settings file:" << settings_file_name;
      if (settings_file.open (QFile::ReadOnly))
        {
          QJsonParseError status;
          auto settings_doc = QJsonDocument::fromJson (settings_file.readAll 
(), &status);
          if (status.error)
            {
              throw error {tr ("Hamlib settings file error: %1 at character 
offset %2")
                             .arg (status.errorString ()).arg (status.offset)};
            }
          qDebug () << "Hamlib settings JSON:" << settings_doc.toJson ();
          if (!settings_doc.isObject ())
            {
              throw error {tr ("Hamlib settings file error: top level must be a 
JSON object")};
            }
          auto const& settings = settings_doc.object ();

          //
          // configuration settings
          //
          auto const& config = settings["config"];
          if (!config.isUndefined ())
            {
              if (!config.isObject ())
                {
                  throw error {tr ("Hamlib settings file error: config must be 
a JSON object")};
                }
              auto const& config_list = config.toObject ();
              for (auto item = config_list.constBegin (); item != 
config_list.constEnd (); ++item)
                {
                  m_->set_conf (item.key ().toLocal8Bit ().constData ()
                                , (*item).toVariant ().toString ().toLocal8Bit 
().constData ());
                }
            }
        }
    }
}

int HamlibTransceiver::do_start ()
{
  CAT_TRACE ("starting: " << rig_get_caps_cptr (m_->model_, 
RIG_CAPS_MFG_NAME_CPTR)
             << ": " << rig_get_caps_cptr (m_->model_, 
RIG_CAPS_MODEL_NAME_CPTR));

  token_t token = rig_token_lookup (m_->rig_.data (), "client");
  if (RIG_CONF_END != token)    // only set if valid for rig model
    {
      rig_set_conf (m_->rig_.data (), token, "WSJTX");
    }

  m_->error_check (rig_open (m_->rig_.data ()), tr ("opening connection to 
rig"));

  // reset dynamic state
  m_->one_VFO_ = false;
  m_->reversed_ = false;
  m_->freq_query_works_ = rig_get_function_ptr (m_->model_, 
RIG_FUNCTION_GET_FREQ);
  m_->mode_query_works_ = rig_get_function_ptr (m_->model_, 
RIG_FUNCTION_GET_MODE);
  m_->split_query_works_ = rig_get_function_ptr (m_->model_, 
RIG_FUNCTION_GET_SPLIT_VFO);
  m_->tickle_hamlib_ = false;
  m_->get_vfo_works_ = true;
  m_->set_vfo_works_ = true;
  do_pwr_ &= (!m_->is_dummy_ && rig_get_function_ptr (m_->model_, 
RIG_FUNCTION_GET_LEVEL) && (rig_get_caps_int (m_->model_, 
RIG_CAPS_HAS_GET_LEVEL) & RIG_LEVEL_RFPOWER_METER_WATTS) == 
RIG_LEVEL_RFPOWER_METER_WATTS);
  do_pwr2_ &= (!m_->is_dummy_ && rig_get_function_ptr (m_->model_, 
RIG_FUNCTION_GET_LEVEL) && (rig_get_caps_int (m_->model_, 
RIG_CAPS_HAS_GET_LEVEL) & RIG_LEVEL_RFPOWER) == RIG_LEVEL_RFPOWER);
  do_swr_ &= (!m_->is_dummy_ && rig_get_function_ptr (m_->model_, 
RIG_FUNCTION_GET_LEVEL) && (rig_get_caps_int (m_->model_, 
RIG_CAPS_HAS_GET_LEVEL) & RIG_LEVEL_SWR) == RIG_LEVEL_SWR);

  // the Net rigctl back end promises all functions work but we must
  // test get_vfo as it determines our strategy for Icom rigs
  vfo_t vfo;
  int rc = rig_get_vfo (m_->rig_.data (), &vfo);
  if (-RIG_ENAVAIL == rc || -RIG_ENIMPL == rc)
    {
      m_->get_vfo_works_ = false;
      // determine if the rig uses single VFO addressing i.e. A/B and
      // no get_vfo function
      if (m_->rig_->state.vfo_list & RIG_VFO_B)
        {
          m_->one_VFO_ = true;
        }
    }
  else
    {
      m_->error_check (rc, "testing getting current VFO");
    }

  if ((WSJT_RIG_NONE_CAN_SPLIT || !m_->is_dummy_)
      && rig_get_function_ptr (m_->model_, RIG_FUNCTION_SET_SPLIT_VFO)) // if 
split is possible do some extra setup
    {
      freq_t f1;
      freq_t f2;
      rmode_t m {RIG_MODE_USB};
      rmode_t mb;
      pbwidth_t w {RIG_PASSBAND_NORMAL};
      pbwidth_t wb;
      if (m_->freq_query_works_ && m_->mode_query_works_
          && (!m_->get_vfo_works_ || !rig_get_function_ptr (m_->model_, 
RIG_FUNCTION_GET_VFO)))
        {
          // Icom have deficient CAT protocol with no way of reading which
          // VFO is selected or if SPLIT is selected so we have to simply
          // assume it is as when we started by setting at open time right
          // here. We also gather/set other initial state.
          m_->error_check (rig_get_freq (m_->rig_.data (), RIG_VFO_CURR, &f1), 
tr ("getting current frequency"));
          f1 = std::round (f1);
          CAT_TRACE ("current frequency=" << f1);

          m_->error_check (rig_get_mode (m_->rig_.data (), RIG_VFO_CURR, &m, 
&w), tr ("getting current mode"));
          CAT_TRACE ("current mode=" << rig_strrmode (m) << " bw=" << w);

          if (!rig_get_function_ptr (m_->model_, RIG_FUNCTION_SET_VFO))
            {
              CAT_TRACE ("rig_vfo_op TOGGLE");
              rc = rig_vfo_op (m_->rig_.data (), RIG_VFO_CURR, RIG_OP_TOGGLE);
            }
          else
            {
              CAT_TRACE ("rig_set_vfo to other VFO");
              rc = rig_set_vfo (m_->rig_.data (), m_->rig_->state.vfo_list & 
RIG_VFO_B ? RIG_VFO_B : RIG_VFO_SUB);
              if (-RIG_ENAVAIL == rc || -RIG_ENIMPL == rc)
                {
                  // if we are talking to netrigctl then toggle VFO op
                  // may still work
                  CAT_TRACE ("rig_vfo_op TOGGLE");
                  rc = rig_vfo_op (m_->rig_.data (), RIG_VFO_CURR, 
RIG_OP_TOGGLE);
                }
            }
          if (-RIG_ENAVAIL == rc || -RIG_ENIMPL == rc)
            {
              // we are probably dealing with rigctld so we do not
              // have completely accurate rig capabilities
              m_->set_vfo_works_ = false;
              m_->one_VFO_ = false; // we do not need single VFO addressing
            }
          else
            {
              m_->error_check (rc, tr ("exchanging VFOs"));
            }

          if (m_->set_vfo_works_)
            {
              // without the above we cannot proceed but we know we
              // are on VFO A and that will not change so there's no
              // need to execute this block
              m_->error_check (rig_get_freq (m_->rig_.data (), RIG_VFO_CURR, 
&f2), tr ("getting other VFO frequency"));
              f2 = std::round (f2);
              CAT_TRACE ("rig_get_freq other frequency=" << f2);

              m_->error_check (rig_get_mode (m_->rig_.data (), RIG_VFO_CURR, 
&mb, &wb), tr ("getting other VFO mode"));
              CAT_TRACE ("rig_get_mode other mode=" << rig_strrmode (mb) << " 
bw=" << wb);

              update_other_frequency (f2);

              if (!rig_get_function_ptr (m_->model_, RIG_FUNCTION_SET_VFO))
                {
                  CAT_TRACE ("rig_vfo_op TOGGLE");
                  m_->error_check (rig_vfo_op (m_->rig_.data (), RIG_VFO_CURR, 
RIG_OP_TOGGLE), tr ("exchanging VFOs"));
                }
              else
                {
                  CAT_TRACE ("rig_set_vfo A/MAIN");
                  m_->error_check (rig_set_vfo (m_->rig_.data (), 
m_->rig_->state.vfo_list & RIG_VFO_A ? RIG_VFO_A : RIG_VFO_MAIN), tr ("setting 
current VFO"));
                }

              if (f1 != f2 || m != mb || w != wb)       // we must have started 
with MAIN/A
                {
                  update_rx_frequency (f1);
                }
              else
                {
                  m_->error_check (rig_get_freq (m_->rig_.data (), 
RIG_VFO_CURR, &f1), tr ("getting frequency"));
                  f1 = std::round (f1);
                  CAT_TRACE ("rig_get_freq frequency=" << f1);

                  m_->error_check (rig_get_mode (m_->rig_.data (), 
RIG_VFO_CURR, &m, &w), tr ("getting mode"));
                  CAT_TRACE ("rig_get_mode mode=" << rig_strrmode (m) << " bw=" 
<< w);

                  update_rx_frequency (f1);
                }
            }

          // TRACE_CAT ("rig_set_split_vfo split off");
          // m_->error_check (rig_set_split_vfo (m_->rig_.data (), 
RIG_VFO_CURR, RIG_SPLIT_OFF, RIG_VFO_CURR), tr ("setting split off"));
          // update_split (false);
        }
      else
        {
          vfo_t v {RIG_VFO_A};  // assume RX always on VFO A/MAIN

          if (m_->get_vfo_works_ && rig_get_function_ptr (m_->model_, 
RIG_FUNCTION_GET_VFO))
            {
              m_->error_check (rig_get_vfo (m_->rig_.data (), &v), tr ("getting 
current VFO")); // has side effect of establishing current VFO inside hamlib
              CAT_TRACE ("rig_get_vfo current VFO=" << rig_strvfo (v));
            }

          m_->reversed_ = RIG_VFO_B == v;

          if (m_->mode_query_works_ && !(rig_get_caps_int (m_->model_, 
RIG_CAPS_TARGETABLE_VFO) & RIG_TARGETABLE_MODE))
            {
              if (RIG_OK == rig_get_mode (m_->rig_.data (), RIG_VFO_CURR, &m, 
&w))
                {
                  CAT_TRACE ("rig_get_mode current mode=" << rig_strrmode (m) 
<< " bw=" << w);
                }
              else
                {
                  m_->mode_query_works_ = false;
                  // Some rigs (HDSDR) don't have a working way of
                  // reporting MODE so we give up on mode queries -
                  // sets will still cause an error
                  CAT_TRACE ("rig_get_mode can't do on this rig");
                }
            }
        }
      update_mode (m_->map_mode (m));
    }

  m_->tickle_hamlib_ = true;

  if (m_->is_dummy_ && !m_->ptt_only_ && impl::dummy_frequency_)
    {
      // return to where last dummy instance was
      // TODO: this is going to break down if multiple dummy rigs are used
      rig_set_freq (m_->rig_.data (), RIG_VFO_CURR, impl::dummy_frequency_);
      update_rx_frequency (impl::dummy_frequency_);
      if (RIG_MODE_NONE != impl::dummy_mode_)
        {
          rig_set_mode (m_->rig_.data (), RIG_VFO_CURR, impl::dummy_mode_, 
RIG_PASSBAND_NOCHANGE);
          update_mode (m_->map_mode (impl::dummy_mode_));
        }
    }

#if HAVE_HAMLIB_CACHING || HAVE_HAMLIB_OLD_CACHING
  // we must disable Hamlib caching because it lies about frequency
  // for less than 1 Hz resolution rigs
  auto orig_cache_timeout = rig_get_cache_timeout_ms (m_->rig_.data (), 
HAMLIB_CACHE_ALL);
  rig_set_cache_timeout_ms (m_->rig_.data (), HAMLIB_CACHE_ALL, 0);
#endif

  int resolution {0};
  if (m_->freq_query_works_)
    {
      freq_t current_frequency;
      m_->error_check (rig_get_freq (m_->rig_.data (), RIG_VFO_CURR, 
&current_frequency), tr ("getting current VFO frequency"));
      current_frequency = std::round (current_frequency);
      Frequency f = current_frequency;
      if (f && !(f % 10))
        {
          auto test_frequency = f - f % 100 + 55;
          m_->error_check (rig_set_freq (m_->rig_.data (), RIG_VFO_CURR, 
test_frequency), tr ("setting frequency"));
          freq_t new_frequency;
          m_->error_check (rig_get_freq (m_->rig_.data (), RIG_VFO_CURR, 
&new_frequency), tr ("getting current VFO frequency"));
          new_frequency = std::round (new_frequency);
          switch (static_cast<Radio::FrequencyDelta> (new_frequency - 
test_frequency))
            {
            case -5: resolution = -1; break;  // 10Hz truncated
            case 5: resolution = 1; break;    // 10Hz rounded
            case -15: resolution = -2; break; // 20Hz truncated
            case -55: resolution = -3; break; // 100Hz truncated
            case 45: resolution = 3; break;   // 100Hz rounded
            }
          if (1 == resolution)      // may be 20Hz rounded
            {
              test_frequency = f - f % 100 + 51;
              m_->error_check (rig_set_freq (m_->rig_.data (), RIG_VFO_CURR, 
test_frequency), tr ("setting frequency"));
              m_->error_check (rig_get_freq (m_->rig_.data (), RIG_VFO_CURR, 
&new_frequency), tr ("getting current VFO frequency"));
              if (9 == static_cast<Radio::FrequencyDelta> (new_frequency - 
test_frequency))
                {
                  resolution = 2;   // 20Hz rounded
                }
            }
          m_->error_check (rig_set_freq (m_->rig_.data (), RIG_VFO_CURR, 
current_frequency), tr ("setting frequency"));
        }
    }
  else
    {
      resolution = -1;          // best guess
    }

#if HAVE_HAMLIB_CACHING || HAVE_HAMLIB_OLD_CACHING
  // revert Hamlib cache timeout
  rig_set_cache_timeout_ms (m_->rig_.data (), HAMLIB_CACHE_ALL, 
orig_cache_timeout);
#endif

  do_poll ();

  CAT_TRACE ("finished start " << state () << " reversed=" << m_->reversed_ << 
" resolution=" << resolution);
  return resolution;
}

void HamlibTransceiver::do_stop ()
{
  if (m_->is_dummy_ && !m_->ptt_only_)
    {
      rig_get_freq (m_->rig_.data (), RIG_VFO_CURR, &impl::dummy_frequency_);
      impl::dummy_frequency_ = std::round (impl::dummy_frequency_);
      if (m_->mode_query_works_)
        {
          pbwidth_t width;
          rig_get_mode (m_->rig_.data (), RIG_VFO_CURR, &impl::dummy_mode_, 
&width);
        }
    }
  if (m_->rig_)
    {
      rig_close (m_->rig_.data ());
    }

  CAT_TRACE ("state: " << state () << " reversed=" << m_->reversed_);
}

void HamlibTransceiver::do_frequency (Frequency f, MODE m, bool no_ignore)
{
  CAT_TRACE ("f: " << f << " mode: " << m << " reversed: " << m_->reversed_);

  // only change when receiving or simplex or direct VFO addressing
  // unavailable or forced
  if (!state ().ptt () || !state ().split () || !m_->one_VFO_ || no_ignore)
    {
      // for the 1st time as a band change may cause a recalled mode to be
      // set
      vfo_t target_vfo = RIG_VFO_CURR;
      if (!(m_->rig_->state.vfo_list & RIG_VFO_B))
        {
          target_vfo = RIG_VFO_MAIN; // no VFO A/B so force to Rx on MAIN
        }
      m_->error_check (rig_set_freq (m_->rig_.data (), target_vfo, f), tr 
("setting frequency"));
      update_rx_frequency (f);

      if (m_->mode_query_works_ && UNK != m)
        {
          rmode_t current_mode;
          pbwidth_t current_width;
          auto new_mode = m_->map_mode (m);
          m_->error_check (rig_get_mode (m_->rig_.data (), target_vfo, 
&current_mode, &current_width), tr ("getting current VFO mode"));
          CAT_TRACE ("rig_get_mode mode=" << rig_strrmode (current_mode) << " 
bw=" << current_width);

          if (new_mode != current_mode)
            {
              CAT_TRACE ("rig_set_mode mode=" << rig_strrmode (new_mode));
              m_->error_check (rig_set_mode (m_->rig_.data (), target_vfo, 
new_mode, RIG_PASSBAND_NOCHANGE), tr ("setting current VFO mode"));

              // for the 2nd time because a mode change may have caused a
              // frequency change
              m_->error_check (rig_set_freq (m_->rig_.data (), RIG_VFO_CURR, 
f), tr ("setting frequency"));

              // for the second time because some rigs change mode according
              // to frequency such as the TS-2000 auto mode setting
              CAT_TRACE ("rig_set_mode mode=" << rig_strrmode (new_mode));
              m_->error_check (rig_set_mode (m_->rig_.data (), target_vfo, 
new_mode, RIG_PASSBAND_NOCHANGE), tr ("setting current VFO mode"));
            }
          // set mode on VFOB too if we are in split
          if (state ().split()) rig_set_mode (m_->rig_.data (), RIG_VFO_B, 
new_mode, RIG_PASSBAND_NOCHANGE), tr ("setting VFOB mode");
          update_mode (m);
        }
    }
}

void HamlibTransceiver::do_tx_frequency (Frequency tx, MODE mode, bool 
no_ignore)
{
  CAT_TRACE ("txf: " << tx << " reversed: " << m_->reversed_);

  if (WSJT_RIG_NONE_CAN_SPLIT || !m_->is_dummy_) // split is meaningless if you 
can't see it
    {
      auto split = tx ? RIG_SPLIT_ON : RIG_SPLIT_OFF;
      auto vfos = m_->get_vfos (tx);
      // auto rx_vfo = std::get<0> (vfos); // or use RIG_VFO_CURR
      auto tx_vfo = std::get<1> (vfos);

      if (tx)
        {
          // Doing set split for the 1st of two times, this one
          // ensures that the internal Hamlib state is correct
          // otherwise rig_set_split_freq() will target the wrong VFO
          // on some rigs

          if (m_->tickle_hamlib_)
            {
              // This potentially causes issues with the Elecraft K3
              // which will block setting split mode when it deems
              // cross mode split operation not possible. There's not
              // much we can do since the Hamlib Library needs this
              // call at least once to establish the Tx VFO. Best we
              // can do is only do this once per session.
              CAT_TRACE ("rig_set_split_vfo split=" << split);
              auto rc = rig_set_split_vfo (m_->rig_.data (), RIG_VFO_CURR, 
split, tx_vfo);
              if (tx || (-RIG_ENAVAIL != rc && -RIG_ENIMPL != rc))
                {
                  // On rigs that can't have split controlled only throw an
                  // exception when an error other than command not accepted
                  // is returned when trying to leave split mode. This allows
                  // fake split mode and non-split mode to work without error
                  // on such rigs without having to know anything about the
                  // specific rig.
                  m_->error_check (rc, tr ("setting/unsetting split mode"));
                }
              m_->tickle_hamlib_ = false;
              update_split (tx);
            }

          // just change current when transmitting with single VFO
          // addressing
          if (state ().ptt () && m_->one_VFO_)
            {
              CAT_TRACE ("rig_set_split_vfo split=" << split);
              m_->error_check (rig_set_split_vfo (m_->rig_.data (), 
RIG_VFO_CURR, split, tx_vfo), tr ("setting split mode"));

              m_->error_check (rig_set_freq (m_->rig_.data (), RIG_VFO_CURR, 
tx), tr ("setting frequency"));

              if (UNK != mode && m_->mode_query_works_)
                {
                  rmode_t current_mode;
                  pbwidth_t current_width;
                  auto new_mode = m_->map_mode (mode);
                  m_->error_check (rig_get_mode (m_->rig_.data (), 
RIG_VFO_CURR, &current_mode, &current_width), tr ("getting current VFO mode"));
                  CAT_TRACE ("rig_get_mode mode=" << rig_strrmode 
(current_mode) << " bw=" << current_width);

                  if (new_mode != current_mode)
                    {
                      CAT_TRACE ("rig_set_mode mode=" << rig_strrmode 
(new_mode));
                      m_->error_check (rig_set_mode (m_->rig_.data (), 
RIG_VFO_CURR, new_mode, RIG_PASSBAND_NOCHANGE), tr ("setting current VFO 
mode"));
                    }
                }
              update_other_frequency (tx);
            }
          else if (!m_->one_VFO_ || no_ignore)   // if not single VFO 
addressing and not forced
            {
              hamlib_tx_vfo_fixup fixup (m_->rig_.data (), tx_vfo);
              if (UNK != mode)
                {
                  auto new_mode = m_->map_mode (mode);
                  CAT_TRACE ("rig_set_split_freq_mode freq=" << tx
                             << " mode = " << rig_strrmode (new_mode));
                  m_->error_check (rig_set_split_freq_mode (m_->rig_.data (), 
RIG_VFO_CURR, tx, new_mode, RIG_PASSBAND_NOCHANGE), tr ("setting split TX 
frequency and mode"));
                }
              else
                {
                  CAT_TRACE ("rig_set_split_freq freq=" << tx);
                  m_->error_check (rig_set_split_freq (m_->rig_.data (), 
RIG_VFO_CURR, tx), tr ("setting split TX frequency"));
                }
              // Enable split last since some rigs (Kenwood for one) come out
              // of split when you switch RX VFO (to set split mode above for
              // example). Also the Elecraft K3 will refuse to go to split
              // with certain VFO A/B mode combinations.
              CAT_TRACE ("rig_set_split_vfo split=" << split);
              m_->error_check (rig_set_split_vfo (m_->rig_.data (), 
RIG_VFO_CURR, split, tx_vfo), tr ("setting split mode"));
              update_other_frequency (tx);
              update_split (tx);
            }
        }
      else
        {
          // Disable split
          CAT_TRACE ("rig_set_split_vfo split=" << split);
          auto rc = rig_set_split_vfo (m_->rig_.data (), RIG_VFO_CURR, split, 
tx_vfo);
          if (tx || (-RIG_ENAVAIL != rc && -RIG_ENIMPL != rc))
            {
              // On rigs that can't have split controlled only throw an
              // exception when an error other than command not accepted
              // is returned when trying to leave split mode. This allows
              // fake split mode and non-split mode to work without error
              // on such rigs without having to know anything about the
              // specific rig.
              m_->error_check (rc, tr ("setting/unsetting split mode"));
            }
          update_other_frequency (tx);
          update_split (tx);
        }
    }
}

void HamlibTransceiver::do_mode (MODE mode)
{
  CAT_TRACE (mode);

  auto vfos = m_->get_vfos (state ().split ());
  // auto rx_vfo = std::get<0> (vfos);
  auto tx_vfo = std::get<1> (vfos);

  rmode_t current_mode;
  pbwidth_t current_width;
  auto new_mode = m_->map_mode (mode);

  vfo_t target_vfo = RIG_VFO_CURR;
  if (!(m_->rig_->state.vfo_list & RIG_VFO_B))
    {
      target_vfo = RIG_VFO_MAIN; // no VFO A/B so force to Rx on MAIN
    }

  // only change when receiving or simplex if direct VFO addressing unavailable
  if (!(state ().ptt () && state ().split () && m_->one_VFO_))
    {
      m_->error_check (rig_get_mode (m_->rig_.data (), target_vfo, 
&current_mode, &current_width), tr ("getting current VFO mode"));
      CAT_TRACE ("rig_get_mode mode=" << rig_strrmode (current_mode) << " bw=" 
<< current_width);

      if (new_mode != current_mode)
        {
          CAT_TRACE ("rig_set_mode mode=" << rig_strrmode (new_mode));
          m_->error_check (rig_set_mode (m_->rig_.data (), target_vfo, 
new_mode, RIG_PASSBAND_NOCHANGE), tr ("setting current VFO mode"));
        }
    }

  // just change current when transmitting split with one VFO mode
  if (state ().ptt () && state ().split () && m_->one_VFO_)
    {
      m_->error_check (rig_get_mode (m_->rig_.data (), RIG_VFO_CURR, 
&current_mode, &current_width), tr ("getting current VFO mode"));
      CAT_TRACE ("rig_get_mode mode=" << rig_strrmode (current_mode) << " bw=" 
<< current_width);

      if (new_mode != current_mode)
        {
          CAT_TRACE ("rig_set_mode mode=" << rig_strrmode (new_mode));
          m_->error_check (rig_set_mode (m_->rig_.data (), RIG_VFO_CURR, 
new_mode, RIG_PASSBAND_NOCHANGE), tr ("setting current VFO mode"));
        }
    }
  else if (state ().split () && !m_->one_VFO_)
    {
      m_->error_check (rig_get_split_mode (m_->rig_.data (), RIG_VFO_CURR, 
&current_mode, &current_width), tr ("getting split TX VFO mode"));
      CAT_TRACE ("rig_get_split_mode mode=" << rig_strrmode (current_mode) << " 
bw=" << current_width);

      if (new_mode != current_mode)
        {
          CAT_TRACE ("rig_set_split_mode mode=" << rig_strrmode (new_mode));
          hamlib_tx_vfo_fixup fixup (m_->rig_.data (), tx_vfo);
          m_->error_check (rig_set_split_mode (m_->rig_.data (), RIG_VFO_CURR, 
new_mode, RIG_PASSBAND_NOCHANGE), tr ("setting split TX VFO mode"));
        }
    }
  update_mode (mode);
}

void HamlibTransceiver::do_poll ()
{
  freq_t f;
  rmode_t m;
  pbwidth_t w;
  split_t s;

  if (m_->get_vfo_works_ && rig_get_function_ptr (m_->model_, 
RIG_FUNCTION_GET_VFO))
    {
      vfo_t v;
      m_->error_check (rig_get_vfo (m_->rig_.data (), &v), tr ("getting current 
VFO")); // has side effect of establishing current VFO inside hamlib
      CAT_TRACE ("VFO=" << rig_strvfo (v));
      m_->reversed_ = RIG_VFO_B == v;
    }

  if ((WSJT_RIG_NONE_CAN_SPLIT || !m_->is_dummy_)
      && rig_get_function_ptr (m_->model_, RIG_FUNCTION_GET_SPLIT_VFO) && 
m_->split_query_works_)
    {
      vfo_t v {RIG_VFO_NONE};           // so we can tell if it doesn't get 
updated :(
      auto rc = rig_get_split_vfo (m_->rig_.data (), RIG_VFO_CURR, &s, &v);
      if (-RIG_OK == rc && RIG_SPLIT_ON == s)
        {
          CAT_TRACE ("rig_get_split_vfo split=" << s << " VFO=" << rig_strvfo 
(v));
          update_split (true);
          // if (RIG_VFO_A == v)
          //    {
          //      m_->reversed_ = true; // not sure if this helps us here
          //    }
        }
      else if (-RIG_OK == rc)   // not split
        {
          CAT_TRACE ("rig_get_split_vfo split=" << s << " VFO=" << rig_strvfo 
(v));
          update_split (false);
        }
      else
        {
          // Some rigs (Icom) don't have a way of reporting SPLIT
          // mode
          CAT_TRACE ("rig_get_split_vfo can't do on this rig");
          // just report how we see it based on prior commands
          m_->split_query_works_ = false;
        }
    }

  if (m_->freq_query_works_)
    {
      // only read if possible and when receiving or simplex
      if (!state ().ptt () || !state ().split ())
        {
          m_->error_check (rig_get_freq (m_->rig_.data (), RIG_VFO_CURR, &f), 
tr ("getting current VFO frequency"));
          f = std::round (f);
          CAT_TRACE ("rig_get_freq frequency=" << Radio::frequency (f));
          update_rx_frequency (f);
        }

      if ((WSJT_RIG_NONE_CAN_SPLIT || !m_->is_dummy_)
          && state ().split ()
          && (rig_get_caps_int (m_->model_, RIG_CAPS_TARGETABLE_VFO) & 
RIG_TARGETABLE_FREQ)
          && !m_->one_VFO_)
        {
          // only read "other" VFO if in split, this allows rigs like
          // FlexRadio to work in Kenwood TS-2000 mode despite them
          // not having a FB; command

          // we can only probe current VFO unless rig supports reading
          // the other one directly because we can't glitch the Rx
          m_->error_check (rig_get_freq (m_->rig_.data ()
                                         , m_->reversed_
                                         ? (m_->rig_->state.vfo_list & 
RIG_VFO_A ? RIG_VFO_A : RIG_VFO_MAIN)
                                         : (m_->rig_->state.vfo_list & 
RIG_VFO_B ? RIG_VFO_B : RIG_VFO_SUB)
                                         , &f), tr ("getting other VFO 
frequency"));
          f = std::round (f);
          CAT_TRACE ("rig_get_freq other VFO=" << f);
          update_other_frequency (f);
        }
    }

  // only read when receiving or simplex if direct VFO addressing unavailable
  if ((!state ().ptt () || !state ().split ())
      && m_->mode_query_works_)
    {
      // We have to ignore errors here because Yaesu FTdx... rigs can
      // report the wrong mode when transmitting split with different
      // modes per VFO. This is unfortunate because that is exactly
      // what you need to do to get 4kHz Rx b.w and modulation into
      // the rig through the data socket or USB. I.e.  USB for Rx and
      // DATA-USB for Tx.
      auto rc = rig_get_mode (m_->rig_.data (), RIG_VFO_CURR, &m, &w);
      if (RIG_OK == rc)
        {
          CAT_TRACE ("rig_get_mode mode=" << rig_strrmode (m) << " bw=" << w);
          update_mode (m_->map_mode (m));
        }
      else
        {
          CAT_TRACE ("rig_get_mode mode failed with rc: " << rc << " ignoring");
        }
    }

  if (RIG_PTT_NONE != m_->rig_->state.pttport.type.ptt && rig_get_function_ptr 
(m_->model_, RIG_FUNCTION_GET_PTT))
  {
    ptt_t p;
    auto rc = rig_get_ptt (m_->rig_.data (), RIG_VFO_CURR, &p);
    if (-RIG_ENAVAIL != rc && -RIG_ENIMPL != rc) // may fail if
      // Net rig ctl and target doesn't
      // support command
      {
        m_->error_check (rc, tr ("getting PTT state"));
        CAT_TRACE ("rig_get_ptt PTT=" << p);
        update_PTT (!(RIG_PTT_OFF == p));
     }
   }

  if (ptt_on_) {
    // update PWR and SWR
    value_t strength;
    int rc;
    if (do_swr_) {
        rc = rig_get_level (m_->rig_.data (), RIG_VFO_CURR, RIG_LEVEL_SWR, 
&strength);
        if (RIG_OK == rc && ptt_on_) {
          // printf ("SWR %.3f\n",strength.f);
          if (strength.f >= 1.000)
          {
            update_swr (strength.f*100);
          }
          else
          {
            update_swr (0);
          }
        } else {
          CAT_TRACE ("rig_get_level RIG_LEVEL_SWR failed with rc:" << rc << 
"ignoring");
          update_swr (0);
        }
    }
    if (do_pwr_) {
      rc = rig_get_level (m_->rig_.data (), RIG_VFO_CURR, 
RIG_LEVEL_RFPOWER_METER_WATTS, &strength);
      if (RIG_OK == rc) {
          update_power (strength.f*1000);
      } else {
          CAT_TRACE ("rig_get_level RFPOWER_METER_WATTS failed with rc:" << rc 
<< "ignoring");
          update_power (0);
      }
    } else if (do_pwr2_) {
      rc = rig_get_level (m_->rig_.data (), RIG_VFO_CURR, RIG_LEVEL_RFPOWER, 
&strength);
      if (RIG_OK == rc) {
          unsigned int mwpower;
          rc = rig_power2mW(m_->rig_.data (),&mwpower,strength.f,f,m);
          if (RIG_OK != rc) {
            CAT_TRACE ("rig_power2mW failed with rc:" << rc << "ignoring");
            mwpower=0;
          }
          update_power (mwpower);
          // printf ("POWER %.3f %.1f\n",strength.f,mwpower / 1000.);
      } else {
          CAT_TRACE ("rig_get_level RFPOWER failed with rc:" << rc << 
"ignoring");
          update_power (0);
      }
    } else  update_power (0);
  } else {
    update_power (0);
    update_swr (0);
  }
}

void HamlibTransceiver::do_ptt (bool on)
{
    CAT_TRACE ("PTT: " << on << " " << state () << " reversed=" << 
m_->reversed_);
  if (on)
    {
       if (RIG_PTT_NONE != m_->rig_->state.pttport.type.ptt)
        {
          ptt_on_ = true;
          CAT_TRACE ("rig_set_ptt PTT=true");
          auto ptt_type = rig_get_caps_int (m_->model_, RIG_CAPS_PTT_TYPE);
          m_->error_check (rig_set_ptt (m_->rig_.data (), RIG_VFO_CURR
                                        , RIG_PTT_RIG_MICDATA == ptt_type && 
m_->back_ptt_port_
                                        ? RIG_PTT_ON_DATA : RIG_PTT_ON), tr 
("setting PTT on"));
        }
    }
  else
    {
      if (RIG_PTT_NONE != m_->rig_->state.pttport.type.ptt)
        {
          ptt_on_ = false;
          CAT_TRACE ("rig_set_ptt PTT=false");
          m_->error_check (rig_set_ptt (m_->rig_.data (), RIG_VFO_CURR, 
RIG_PTT_OFF), tr ("setting PTT off"));
        }
    }

  update_PTT (on);
}

// pass in false if any post_action is needed for a rig -- don't know of any as 
of 2024-04-14
void HamlibTransceiver::do_tune (bool on)
{
  CAT_TRACE ("Tune: " << on << " " << state ());
  if (on)
    {
       if (RIG_PTT_NONE != m_->rig_->state.pttport.type.ptt)
        {
          update_PTT (true); // we'll change the PTT button while we do this
          CAT_TRACE ("rig_vfo_opt RIG_VFO_OP_TUNE=" << on);
          // ptt button will stay lit if error message is displaye
          m_->error_check(rig_vfo_op (m_->rig_.data (), RIG_VFO_CURR, 
RIG_OP_TUNE), "turning TUNE on");
          update_PTT (false);
        }
    }
#if 0
  else // do we need to be able to turn PTT off on anybody?
    {
      if (RIG_PTT_NONE != m_->rig_->state.pttport.type.ptt)
        {
          ptt_on_ = false;
          CAT_TRACE ("rig_set_ptt PTT=false");
          m_->error_check (rig_set_ptt (m_->rig_.data (), RIG_VFO_CURR, 
RIG_PTT_OFF), tr ("setting PTT off"));
        }
    }
#endif
}
_______________________________________________
wsjt-devel mailing list
wsjt-devel@lists.sourceforge.net
https://lists.sourceforge.net/lists/listinfo/wsjt-devel

Reply via email to