[ 
https://issues.apache.org/jira/browse/BEAM-13983?focusedWorklogId=761021&page=com.atlassian.jira.plugin.system.issuetabpanels:worklog-tabpanel#worklog-761021
 ]

ASF GitHub Bot logged work on BEAM-13983:
-----------------------------------------

                Author: ASF GitHub Bot
            Created on: 22/Apr/22 18:54
            Start Date: 22/Apr/22 18:54
    Worklog Time Spent: 10m 
      Work Description: TheNeuralBit commented on code in PR #17368:
URL: https://github.com/apache/beam/pull/17368#discussion_r856490682


##########
sdks/python/apache_beam/ml/inference/sklearn_loader.py:
##########
@@ -0,0 +1,78 @@
+#
+# Licensed to the Apache Software Foundation (ASF) under one or more
+# contributor license agreements.  See the NOTICE file distributed with
+# this work for additional information regarding copyright ownership.
+# The ASF licenses this file to You under the Apache License, Version 2.0
+# (the "License"); you may not use this file except in compliance with
+# the License.  You may obtain a copy of the License at
+#
+#    http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+#
+
+import enum
+import pickle
+import sys
+from typing import Any
+from typing import Iterable
+from typing import List
+
+import numpy
+
+from apache_beam.io.filesystems import FileSystems
+from apache_beam.ml.inference.api import PredictionResult
+from apache_beam.ml.inference.base import InferenceRunner
+from apache_beam.ml.inference.base import ModelLoader
+
+try:
+  import joblib
+except ImportError:
+  # joblib is an optional dependency.
+  pass
+
+
+class ModelFileType(enum.Enum):
+  PICKLE = 1
+  JOBLIB = 2
+
+
+class SklearnInferenceRunner(InferenceRunner):
+  def run_inference(self, batch: List[numpy.array],
+                    model: Any) -> Iterable[numpy.array]:
+    # vectorize data for better performance
+    vectorized_batch = numpy.stack(batch, axis=0)
+    predictions = model.predict(vectorized_batch)
+    return [PredictionResult(x, y) for x, y in zip(batch, predictions)]
+
+  def get_num_bytes(self, batch: List[numpy.array]) -> int:
+    """Returns the number of bytes of data for a batch."""
+    return sum(sys.getsizeof(element) for element in batch)
+
+
+class SklearnModelLoader(ModelLoader):
+  def __init__(
+      self,
+      model_file_type: ModelFileType = ModelFileType.PICKLE,
+      model_uri: str = ''):
+    self._model_file_type = model_file_type
+    self._model_uri = model_uri
+    self._inference_runner = SklearnInferenceRunner()
+
+  def load_model(self):
+    """Loads and initializes a model for processing."""
+    file = FileSystems.open(self._model_uri, 'rb')
+    if self._model_file_type == ModelFileType.PICKLE:
+      return pickle.load(file)
+    elif self._model_file_type == ModelFileType.JOBLIB:
+      if not joblib:
+        raise ImportError('Joblib not available in SklearnModelLoader.')

Review Comment:
   Note this will be an execution time error causing workers to crash, which 
isn't a great experience. You might consider pointing this to some 
documentation about setting up dependencies.



##########
sdks/python/setup.py:
##########
@@ -169,6 +170,7 @@ def get_version():
     'pytest>=4.4.0,<5.0',
     'pytest-xdist>=1.29.0,<2',
     'pytest-timeout>=1.3.3,<2',
+    'scikit-learn>=0.24.2',

Review Comment:
   It would be good to get an answer on the above (and similarly for joblib)



##########
sdks/python/apache_beam/ml/inference/sklearn_loader.py:
##########
@@ -0,0 +1,78 @@
+#
+# Licensed to the Apache Software Foundation (ASF) under one or more
+# contributor license agreements.  See the NOTICE file distributed with
+# this work for additional information regarding copyright ownership.
+# The ASF licenses this file to You under the Apache License, Version 2.0
+# (the "License"); you may not use this file except in compliance with
+# the License.  You may obtain a copy of the License at
+#
+#    http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+#
+
+import enum
+import pickle
+import sys
+from typing import Any
+from typing import Iterable
+from typing import List
+
+import numpy
+
+from apache_beam.io.filesystems import FileSystems
+from apache_beam.ml.inference.api import PredictionResult
+from apache_beam.ml.inference.base import InferenceRunner
+from apache_beam.ml.inference.base import ModelLoader
+
+try:
+  import joblib
+except ImportError:
+  # joblib is an optional dependency.
+  pass
+
+
+class ModelFileType(enum.Enum):
+  PICKLE = 1
+  JOBLIB = 2
+
+
+class SklearnInferenceRunner(InferenceRunner):
+  def run_inference(self, batch: List[numpy.array],
+                    model: Any) -> Iterable[numpy.array]:
+    # vectorize data for better performance
+    vectorized_batch = numpy.stack(batch, axis=0)
+    predictions = model.predict(vectorized_batch)
+    return [PredictionResult(x, y) for x, y in zip(batch, predictions)]
+
+  def get_num_bytes(self, batch: List[numpy.array]) -> int:
+    """Returns the number of bytes of data for a batch."""
+    return sum(sys.getsizeof(element) for element in batch)
+
+
+class SklearnModelLoader(ModelLoader):
+  def __init__(
+      self,
+      model_file_type: ModelFileType = ModelFileType.PICKLE,
+      model_uri: str = ''):
+    self._model_file_type = model_file_type
+    self._model_uri = model_uri
+    self._inference_runner = SklearnInferenceRunner()
+
+  def load_model(self):
+    """Loads and initializes a model for processing."""
+    file = FileSystems.open(self._model_uri, 'rb')
+    if self._model_file_type == ModelFileType.PICKLE:
+      return pickle.load(file)
+    elif self._model_file_type == ModelFileType.JOBLIB:
+      if not joblib:
+        raise ImportError('Joblib not available in SklearnModelLoader.')
+      return joblib.load(file)
+    raise TypeError('Unsupported serialization type.')

Review Comment:
   nit: I might make this an assertion error since it's a state we shouldn't 
get to given ModelFileType is an enum.





Issue Time Tracking
-------------------

    Worklog Id:     (was: 761021)
    Time Spent: 4h 40m  (was: 4.5h)

> Implement RunInference for Scikit-learn
> ---------------------------------------
>
>                 Key: BEAM-13983
>                 URL: https://issues.apache.org/jira/browse/BEAM-13983
>             Project: Beam
>          Issue Type: Sub-task
>          Components: sdk-py-core
>            Reporter: Andy Ye
>            Assignee: Ryan Thompson
>            Priority: P2
>              Labels: run-inference
>          Time Spent: 4h 40m
>  Remaining Estimate: 0h
>
> Implement RunInference for Scikit-learn as described in the design doc 
> [https://s.apache.org/inference-sklearn-pytorch]
> There will be a sklearn_impl.py file that contains SklearnModelLoader and 
> SlkearnInferenceRunner classes.



--
This message was sent by Atlassian Jira
(v8.20.7#820007)

Reply via email to