Github user fhueske commented on a diff in the pull request:

    https://github.com/apache/flink/pull/3743#discussion_r112570917
  
    --- Diff: 
flink-libraries/flink-table/src/test/scala/org/apache/flink/table/api/scala/stream/table/OverWindowITCase.scala
 ---
    @@ -0,0 +1,265 @@
    +/*
    + * Licensed to the Apache Software Foundation (ASF) under one
    + * or more contributor license agreements.  See the NOTICE file
    + * distributed with this work for additional information
    + * regarding copyright ownership.  The ASF licenses this file
    + * to you under the Apache License, Version 2.0 (the
    + * "License"); you may not use this file except in compliance
    + * with the License.  You may obtain a copy of the License at
    + *
    + *     http://www.apache.org/licenses/LICENSE-2.0
    + *
    + * Unless required by applicable law or agreed to in writing, software
    + * distributed under the License is distributed on an "AS IS" BASIS,
    + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    + * See the License for the specific language governing permissions and
    + * limitations under the License.
    + */
    +
    +package org.apache.flink.table.api.scala.stream.table
    +
    +import org.apache.flink.api.scala._
    +import org.apache.flink.streaming.api.TimeCharacteristic
    +import org.apache.flink.streaming.api.functions.source.SourceFunction
    +import 
org.apache.flink.streaming.api.functions.source.SourceFunction.SourceContext
    +import org.apache.flink.streaming.api.scala.StreamExecutionEnvironment
    +import org.apache.flink.streaming.api.watermark.Watermark
    +import org.apache.flink.table.api.TableEnvironment
    +import org.apache.flink.table.api.scala._
    +import 
org.apache.flink.table.api.scala.stream.table.OverWindowITCase.{RowTimeSourceFunction}
    +import org.apache.flink.table.api.scala.stream.utils.{StreamITCase, 
StreamingWithStateTestBase}
    +import org.apache.flink.types.Row
    +import org.junit.Assert._
    +import org.junit.Test
    +
    +import scala.collection.mutable
    +
    +class OverWindowITCase extends StreamingWithStateTestBase {
    +
    +  @Test
    +  def testProcTimeUnBoundedPartitionedRowOver(): Unit = {
    +
    +    val data = List(
    +      (1L, 1, "Hello"),
    +      (2L, 2, "Hello"),
    +      (3L, 3, "Hello"),
    +      (4L, 4, "Hello"),
    +      (5L, 5, "Hello"),
    +      (6L, 6, "Hello"),
    +      (7L, 7, "Hello World"),
    +      (8L, 8, "Hello World"),
    +      (20L, 20, "Hello World"))
    +
    +    val env = StreamExecutionEnvironment.getExecutionEnvironment
    +    env.setParallelism(1)
    +    val tEnv = TableEnvironment.getTableEnvironment(env)
    +    StreamITCase.testResults = mutable.MutableList()
    +    StreamITCase.clear
    +    val stream = env.fromCollection(data)
    +    val table = stream.toTable(tEnv, 'a, 'b, 'c)
    +
    +    val windowedTable = table
    +      .window(
    +        Over partitionBy 'c orderBy 'procTime preceding UNBOUNDED_ROW 
following CURRENT_ROW as 'w)
    +      .select('c, 'b.count over 'w as 'mycount)
    +      .select('c, 'mycount)
    +
    +    val results = windowedTable.toDataStream[Row]
    +    results.addSink(new StreamITCase.StringSink)
    +    env.execute()
    +
    +    val expected = Seq(
    +      "Hello World,1", "Hello World,2", "Hello World,3",
    +      "Hello,1", "Hello,2", "Hello,3", "Hello,4", "Hello,5", "Hello,6")
    +    assertEquals(expected.sorted, StreamITCase.testResults.sorted)
    +  }
    +
    +  @Test
    +  def testRowTimeUnBoundedPartitionedRangeOver(): Unit = {
    +    val env = StreamExecutionEnvironment.getExecutionEnvironment
    +    val tEnv = TableEnvironment.getTableEnvironment(env)
    +    env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime)
    +    env.setStateBackend(getStateBackend)
    +    StreamITCase.testResults = mutable.MutableList()
    +    StreamITCase.clear
    +    env.setParallelism(1)
    +
    +    val data = Seq(
    +      Left(14000005L, (1, 1L, "Hi")),
    +      Left(14000000L, (2, 1L, "Hello")),
    +      Left(14000002L, (1, 1L, "Hello")),
    +      Left(14000002L, (1, 2L, "Hello")),
    +      Left(14000002L, (1, 3L, "Hello world")),
    +      Left(14000003L, (2, 2L, "Hello world")),
    +      Left(14000003L, (2, 3L, "Hello world")),
    +      Right(14000020L),
    +      Left(14000021L, (1, 4L, "Hello world")),
    +      Left(14000022L, (1, 5L, "Hello world")),
    +      Left(14000022L, (1, 6L, "Hello world")),
    +      Left(14000022L, (1, 7L, "Hello world")),
    +      Left(14000023L, (2, 4L, "Hello world")),
    +      Left(14000023L, (2, 5L, "Hello world")),
    +      Right(14000030L)
    +    )
    +    val table = env
    +      .addSource(new RowTimeSourceFunction[(Int, Long, String)](data))
    +      .toTable(tEnv).as('a, 'b, 'c)
    +
    +    val windowedTable = table
    +      .window(Over partitionBy 'a orderBy 'rowtime preceding 
UNBOUNDED_RANGE following
    +         CURRENT_RANGE as 'w)
    +      .select(
    +        'a, 'b, 'c,
    +        'b.sum over 'w,
    +        'b.count over 'w,
    +        'b.avg over 'w,
    +        'b.max over 'w,
    +        'b.min over 'w)
    +
    +    val result = windowedTable.toDataStream[Row]
    +    result.addSink(new StreamITCase.StringSink)
    +    env.execute()
    +
    +    val expected = mutable.MutableList(
    +      "1,1,Hello,6,3,2,3,1",
    +      "1,2,Hello,6,3,2,3,1",
    +      "1,3,Hello world,6,3,2,3,1",
    +      "1,1,Hi,7,4,1,3,1",
    +      "2,1,Hello,1,1,1,1,1",
    +      "2,2,Hello world,6,3,2,3,1",
    +      "2,3,Hello world,6,3,2,3,1",
    +      "1,4,Hello world,11,5,2,4,1",
    +      "1,5,Hello world,29,8,3,7,1",
    +      "1,6,Hello world,29,8,3,7,1",
    +      "1,7,Hello world,29,8,3,7,1",
    +      "2,4,Hello world,15,5,3,5,1",
    +      "2,5,Hello world,15,5,3,5,1"
    +    )
    +
    +    assertEquals(expected.sorted, StreamITCase.testResults.sorted)
    +  }
    +
    +  @Test
    +  def testProcTimeBoundedPartitionedRangeOver(): Unit = {
    +
    +    val data = List(
    +      (1, 1L, 0, "Hallo", 1L),
    +      (2, 2L, 1, "Hallo Welt", 2L),
    +      (2, 3L, 2, "Hallo Welt wie", 1L),
    +      (3, 4L, 3, "Hallo Welt wie gehts?", 2L),
    +      (3, 5L, 4, "ABC", 2L),
    +      (3, 6L, 5, "BCD", 3L),
    +      (4, 7L, 6, "CDE", 2L),
    +      (4, 8L, 7, "DEF", 1L),
    +      (4, 9L, 8, "EFG", 1L),
    +      (4, 10L, 9, "FGH", 2L),
    +      (5, 11L, 10, "GHI", 1L),
    +      (5, 12L, 11, "HIJ", 3L),
    +      (5, 13L, 12, "IJK", 3L),
    +      (5, 14L, 13, "JKL", 2L),
    +      (5, 15L, 14, "KLM", 2L))
    +
    +    val env = StreamExecutionEnvironment.getExecutionEnvironment
    +    env.setStateBackend(getStateBackend)
    +    val tEnv = TableEnvironment.getTableEnvironment(env)
    +    env.setParallelism(1)
    +    StreamITCase.testResults = mutable.MutableList()
    +
    +    val stream = env.fromCollection(data)
    +    val table = stream.toTable(tEnv).as('a, 'b, 'c, 'd, 'e)
    +
    +    val windowedTable = table
    +      .window(Over partitionBy 'a orderBy 'proctime preceding 4.rows 
following CURRENT_ROW as 'w)
    +      .select('a, 'c.sum over 'w, 'c.min over 'w)
    +    val result = windowedTable.toDataStream[Row]
    +    result.addSink(new StreamITCase.StringSink)
    +    env.execute()
    +
    +    val expected = mutable.MutableList(
    +      "1,0,0",
    +      "2,1,1",
    +      "2,3,1",
    +      "3,3,3",
    +      "3,7,3",
    +      "3,12,3",
    +      "4,6,6",
    +      "4,13,6",
    +      "4,21,6",
    +      "4,30,6",
    +      "5,10,10",
    +      "5,21,10",
    +      "5,33,10",
    +      "5,46,10",
    +      "5,60,10")
    +
    +    assertEquals(expected.sorted, StreamITCase.testResults.sorted)
    +  }
    +
    +  @Test
    +  def testRowTimeBoundedPartitionedRowOver(): Unit = {
    --- End diff --
    
    Add a test for rowtime bounded range as well?


---
If your project is set up for it, you can reply to this email and have your
reply appear on GitHub as well. If your project does not have this feature
enabled and wishes so, or if the feature is enabled but not working, please
contact infrastructure at [email protected] or file a JIRA ticket
with INFRA.
---

Reply via email to