A prova que encontrei baseia-se no fato de que, se g é contínua e
periódica, então g é unformemente contínua.

Sendo a composição de duas funcões contínuas, f e x --> x^2, g é contínua.
Vamos mostrar que não é uniformemente contínua, o que implica que não seja
periódica.

Como f não é constante, existem a e b com f(a) <> f(b). Sendo contínua,
periódica e não constante, f tem um período fundamental p > 0. Definamos
duas sequências por u_n = raiz(a + np) e v_n = raiz(b + np). Então, u_n -
v_n --> 0. Mas como para todo n g(u_n) - g(v_n) = f(a + np) - f(b + np) =
f(a) - f(b) <> 0, g(u_n) - g(v_n) não converge para 0. Logo, g não é
uniformemente contínua e, portanto, não é periódica.


Artur Costa Steiner

Em 14 de abr de 2018 11:02, "Claudio Buffara" <claudio.buff...@gmail.com>
escreveu:

f é periódica (digamos, de período T > 0).

Suponhamos que g também seja periódica, digamos de período P.

Para todo x, e todo k em N tal que x+kT >= 0, g(raiz(x+kT)) = f(x+kT) =
f(x+(k+1)T) = g(raiz(x+(k+1)T)) ==>
raiz(x+(k+1)T) - raiz(x+kT) = nP, para algum n em N.
Mas tomando k suficientemente grande, podemos fazer raiz(x+(k+1)T) -
raiz(x+kT) tão pequeno quanto quisermos, em particular < P, o que
contraria raiz(x+(k+1)T)
- raiz(x+kT) = nP.




2018-04-12 15:55 GMT-03:00 Artur Steiner <artur.costa.stei...@gmail.com>:

> Suponhamos que f:R —> R seja contínua, periódica e não constante. Mostre
> que g(x) = f(x^2) não é periódica.
>
> Artur
>
> --
> Esta mensagem foi verificada pelo sistema de antivírus e
> acredita-se estar livre de perigo.
>


-- 
Esta mensagem foi verificada pelo sistema de antivírus e
acredita-se estar livre de perigo.

-- 
Esta mensagem foi verificada pelo sistema de antiv�rus e
 acredita-se estar livre de perigo.

Responder a