I would be tempted to use something like: R=: (2 1,:1 2) o. _1 1&* For example: R"0(0 30p1 45p1 60p1%180) 1 0 0 1
0.866025 _0.5 0.5 0.866025 0.707107 _0.707107 0.707107 0.707107 0.5 _0.866025 0.866025 0.5 FYI, -- Raul On Fri, Dec 18, 2020 at 2:59 AM Francesco Pedulla' <mel...@gmail.com> wrote: > > Dear all, > I need to represent the 2D rotation matrix 'R' > > R = |cos(t) -sin(t)| > |sin(t) cos(t)| > > and compute it for different values of the rotation angle 't'. I am aware > the matrix of function can be represented as a gerund, which I like: > > R =: 2 2$cos`(-@sin)`sin`cos . > > To compute R(t), I wrote the following definition: > > mf =: conjunction : '($x)$,(,x)/.((+/$x)$y)' > > > so that "R mf pi%4" returns R(pi/4). But I find the code for 'mf' not very > elegant. Is there a better way to achieve this? > Thanks in advance for any hint, > > Francesco > ---------------------------------------------------------------------- > For information about J forums see http://www.jsoftware.com/forums.htm ---------------------------------------------------------------------- For information about J forums see http://www.jsoftware.com/forums.htm