Your solution is simple but does not easily generalize to more complex
cases (infact, a requirement I did not express...).
Thanks,

Francesco

On Fri, Dec 18, 2020 at 6:18 PM Raul Miller <rauldmil...@gmail.com> wrote:

> I would be tempted to use something like:
>    R=: (2 1,:1 2) o. _1 1&*
>
> For example:
>    R"0(0 30p1 45p1 60p1%180)
>        1         0
>        0         1
>
> 0.866025      _0.5
>      0.5  0.866025
>
> 0.707107 _0.707107
> 0.707107  0.707107
>
>      0.5 _0.866025
> 0.866025       0.5
>
> FYI,
>
> --
> Raul
>
> On Fri, Dec 18, 2020 at 2:59 AM Francesco Pedulla' <mel...@gmail.com>
> wrote:
> >
> > Dear all,
> > I need to represent the 2D rotation matrix 'R'
> >
> > R = |cos(t)  -sin(t)|
> >        |sin(t)   cos(t)|
> >
> > and compute it for different values of the rotation angle 't'. I am aware
> > the matrix of function can be represented as a gerund, which I like:
> >
> > R =: 2 2$cos`(-@sin)`sin`cos .
> >
> > To compute R(t), I wrote the following definition:
> >
> > mf =: conjunction : '($x)$,(,x)/.((+/$x)$y)'
> >
> >
> > so that "R mf pi%4" returns R(pi/4). But I find the code for 'mf' not
> very
> > elegant. Is there a better way to achieve this?
> > Thanks in advance for any hint,
> >
> > Francesco
> > ----------------------------------------------------------------------
> > For information about J forums see http://www.jsoftware.com/forums.htm
> ----------------------------------------------------------------------
> For information about J forums see http://www.jsoftware.com/forums.htm
>
----------------------------------------------------------------------
For information about J forums see http://www.jsoftware.com/forums.htm

Reply via email to