Hi Lei.

It looks like you have something peculiar going on with your tree or data. If you share it then I'd be happy to try to investigate further; however without the data it will be hard to figure this one out.

All the best, Liam

Liam J. Revell, Associate Professor of Biology
University of Massachusetts Boston
web: http://faculty.umb.edu/liam.revell/
email: liam.rev...@umb.edu
blog: http://blog.phytools.org

On 9/10/2016 8:59 PM, Lei Yang wrote:
Hi, Liam,

Thank you for your suggestions. I tried fitMk in phytools and ace in
ape. Below is what I got.


fit.phytools<-fitMk(tree,bathy2,model="ER",pi="equal")
fit.phytools
Object of class "fitMk".

Fitted (or set) value of Q:
              1shallow 2bathypelagic
1shallow           NaN           NaN
2bathypelagic      NaN           NaN

Fitted (or set) value of pi:
     1shallow 2bathypelagic
          0.5           0.5

Log-likelihood: -1e+50


fit.ape<-ace(bathy2,tree,type="discrete",model="ER")
Error in matexpo(Q * EL[i]) : NA/NaN/Inf in foreign function call (arg 1)
In addition: Warning message:
In ace(bathy2, tree, type = "discrete", model = "ER") :
  model fit suspicious: gradients apparently non-finite


Best wishes, Lei



On Sat, Sep 10, 2016 at 4:22 PM, Liam J. Revell <liam.rev...@umb.edu
<mailto:liam.rev...@umb.edu>> wrote:

    Hi Lei.

    Looks like an error. The likelihood is actually a very *small*
    number as the log-likelihood is a very *large* negative number.
    Similarly, the fitted transition rates are very small - near zero.

    Have you tried to fit the same model using ace in the ape package or
    fitMk in phytools? (These are not totally independent
    implementations, actually, as fitMk borrows some of its code from
    ace, but nonetheless.) These functions should usually result in
    almost the same fitted model and likelihood values as fitDiscrete,
    but make slightly different assumptions about the root state:
    http://blog.phytools.org/2015/09/the-difference-between-different.html
    <http://blog.phytools.org/2015/09/the-difference-between-different.html>.
    You can also fit an Mk model using diversitree or phangorn. (Look
    for details on my blog.)

    All the best, Liam

    Liam J. Revell, Associate Professor of Biology
    University of Massachusetts Boston
    web: http://faculty.umb.edu/liam.revell/
    <http://faculty.umb.edu/liam.revell/>
    email: liam.rev...@umb.edu <mailto:liam.rev...@umb.edu>
    blog: http://blog.phytools.org


    On 9/10/2016 2:00 PM, Lei Yang wrote:

        Dear All,

        I am learning to use fitDiscrete in geiger recently. Results on
        several
        discrete characters look normal except for the following one.
        Can someone
        please tell me why the values of log-likelihood, AIC, and AICc
        are so
        large? Thanks a lot.


            ER<-fitDiscrete(tree, aabb, model="ER")


            ARD<-fitDiscrete(tree, aabb, model="ARD")


            ER


        GEIGER-fitted comparative model of discrete data

         fitted Q matrix:

                           aa              bb

            aa      -5.915287      5.915287

            bb       5.915287     -5.915287


         model summary:

        log-likelihood =
        
-99999999999999996973312221251036165947450327545502362648241750950346848435554075534196338404706251868027512415973882408182135734368278484639385041047239877871023591066789981811181813306167128854888448.000000

        AIC =
        
199999999999999993946624442502072331894900655091004725296483501900693696871108151068392676809412503736055024831947764816364271468736556969278770082094479755742047182133579963622363626612334257709776896.000000

        AICc =
        
199999999999999993946624442502072331894900655091004725296483501900693696871108151068392676809412503736055024831947764816364271468736556969278770082094479755742047182133579963622363626612334257709776896.000000

        free parameters = 1


        Convergence diagnostics:

        optimization iterations = 100

        failed iterations = 0

        frequency of best fit = 1.00


         object summary:

        'lik' -- likelihood function

        'bnd' -- bounds for likelihood search

        'res' -- optimization iteration summary

        'opt' -- maximum likelihood parameter estimates

            ARD


        GEIGER-fitted comparative model of discrete data

         fitted Q matrix:

                                aa                    bb

            aa          -3.629411e-149  3.629411e-149

            bb          3.629411e-149  -3.629411e-149


         model summary:

        log-likelihood =
        
-99999999999999996973312221251036165947450327545502362648241750950346848435554075534196338404706251868027512415973882408182135734368278484639385041047239877871023591066789981811181813306167128854888448.000000

        AIC =
        
199999999999999993946624442502072331894900655091004725296483501900693696871108151068392676809412503736055024831947764816364271468736556969278770082094479755742047182133579963622363626612334257709776896.000000

        AICc =
        
199999999999999993946624442502072331894900655091004725296483501900693696871108151068392676809412503736055024831947764816364271468736556969278770082094479755742047182133579963622363626612334257709776896.000000

        free parameters = 2


        Convergence diagnostics:

        optimization iterations = 100

        failed iterations = 0

        frequency of best fit = 1.00


         object summary:

        'lik' -- likelihood function

        'bnd' -- bounds for likelihood search

        'res' -- optimization iteration summary

        'opt' -- maximum likelihood parameter estimates

            ER$opt$aicc


        [1] 2e+200

            ARD$opt$aicc


        [1] 2e+200



        Sincerely, Lei

                [[alternative HTML version deleted]]

        _______________________________________________
        R-sig-phylo mailing list - R-sig-phylo@r-project.org
        <mailto:R-sig-phylo@r-project.org>
        https://stat.ethz.ch/mailman/listinfo/r-sig-phylo
        <https://stat.ethz.ch/mailman/listinfo/r-sig-phylo>
        Searchable archive at
        http://www.mail-archive.com/r-sig-phylo@r-project.org/
        <http://www.mail-archive.com/r-sig-phylo@r-project.org/>



_______________________________________________
R-sig-phylo mailing list - R-sig-phylo@r-project.org
https://stat.ethz.ch/mailman/listinfo/r-sig-phylo
Searchable archive at http://www.mail-archive.com/r-sig-phylo@r-project.org/

Reply via email to