Github user mengxr commented on a diff in the pull request:
https://github.com/apache/spark/pull/11553#discussion_r57414488
--- Diff:
mllib/src/test/scala/org/apache/spark/ml/feature/QuantileDiscretizerSuite.scala
---
@@ -17,72 +17,25 @@
package org.apache.spark.ml.feature
-import org.apache.spark.{SparkContext, SparkFunSuite}
-import org.apache.spark.ml.attribute.{Attribute, NominalAttribute}
+import org.apache.spark.SparkFunSuite
import org.apache.spark.ml.util.DefaultReadWriteTest
import org.apache.spark.mllib.util.MLlibTestSparkContext
-import org.apache.spark.sql.{Row, SQLContext}
+import org.apache.spark.sql.SQLContext
class QuantileDiscretizerSuite
extends SparkFunSuite with MLlibTestSparkContext with
DefaultReadWriteTest {
- import org.apache.spark.ml.feature.QuantileDiscretizerSuite._
-
- test("Test quantile discretizer") {
- checkDiscretizedData(sc,
- Array[Double](1, 2, 3, 3, 3, 3, 3, 3, 3),
- 10,
- Array[Double](1, 2, 3, 3, 3, 3, 3, 3, 3),
- Array("-Infinity, 1.0", "1.0, 2.0", "2.0, 3.0", "3.0, Infinity"))
-
- checkDiscretizedData(sc,
- Array[Double](1, 2, 3, 3, 3, 3, 3, 3, 3),
- 4,
- Array[Double](1, 2, 3, 3, 3, 3, 3, 3, 3),
- Array("-Infinity, 1.0", "1.0, 2.0", "2.0, 3.0", "3.0, Infinity"))
-
- checkDiscretizedData(sc,
- Array[Double](1, 2, 3, 3, 3, 3, 3, 3, 3),
- 3,
- Array[Double](0, 1, 2, 2, 2, 2, 2, 2, 2),
- Array("-Infinity, 2.0", "2.0, 3.0", "3.0, Infinity"))
-
- checkDiscretizedData(sc,
- Array[Double](1, 2, 3, 3, 3, 3, 3, 3, 3),
- 2,
- Array[Double](0, 1, 1, 1, 1, 1, 1, 1, 1),
- Array("-Infinity, 2.0", "2.0, Infinity"))
-
- }
-
- test("Test getting splits") {
- val splitTestPoints = Array(
- Array[Double]() -> Array(Double.NegativeInfinity, 0,
Double.PositiveInfinity),
- Array(Double.NegativeInfinity) -> Array(Double.NegativeInfinity, 0,
Double.PositiveInfinity),
- Array(Double.PositiveInfinity) -> Array(Double.NegativeInfinity, 0,
Double.PositiveInfinity),
- Array(Double.NegativeInfinity, Double.PositiveInfinity)
- -> Array(Double.NegativeInfinity, 0, Double.PositiveInfinity),
- Array(0.0) -> Array(Double.NegativeInfinity, 0,
Double.PositiveInfinity),
- Array(1.0) -> Array(Double.NegativeInfinity, 1,
Double.PositiveInfinity),
- Array(0.0, 1.0) -> Array(Double.NegativeInfinity, 0, 1,
Double.PositiveInfinity)
- )
- for ((ori, res) <- splitTestPoints) {
- assert(QuantileDiscretizer.getSplits(ori) === res, "Returned splits
are invalid.")
- }
- }
-
- test("Test splits on dataset larger than minSamplesRequired") {
+ test("Test observed number of buckets matches required number of
buckets") {
val sqlCtx = SQLContext.getOrCreate(sc)
import sqlCtx.implicits._
- val datasetSize = QuantileDiscretizer.minSamplesRequired + 1
+ val datasetSize = 100000
val numBuckets = 5
- val df = sc.parallelize((1.0 to datasetSize by
1.0).map(Tuple1.apply)).toDF("input")
+ val df = sc.parallelize(1.0 to datasetSize by
1.0).map(Tuple1.apply).toDF("input")
--- End diff --
minor: `by 1.0` is unnecessary
---
If your project is set up for it, you can reply to this email and have your
reply appear on GitHub as well. If your project does not have this feature
enabled and wishes so, or if the feature is enabled but not working, please
contact infrastructure at [email protected] or file a JIRA ticket
with INFRA.
---
---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]