maropu commented on a change in pull request #25136: [SPARK-28322][SQL] Add
support to Decimal type for integral divide
URL: https://github.com/apache/spark/pull/25136#discussion_r312716579
##########
File path:
sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/analysis/DecimalPrecision.scala
##########
@@ -174,6 +174,20 @@ object DecimalPrecision extends TypeCoercionRule {
CheckOverflow(Pmod(promotePrecision(e1, widerType), promotePrecision(e2,
widerType)),
resultType, nullOnOverflow)
+ case expr @ IntegralDivide(
+ e1 @ DecimalType.Expression(p1, s1), e2 @ DecimalType.Expression(p2,
s2)) =>
+ val widerType = widerDecimalType(p1, s1, p2, s2)
+ val promotedExpr =
+ IntegralDivide(promotePrecision(e1, widerType), promotePrecision(e2,
widerType))
+ if (expr.dataType.isInstanceOf[DecimalType]) {
+ // This follows division rule
+ val intDig = p1 - s1 + s2
+ // No precision loss can happen as the result scale is 0, so only
overflow can happen
+ CheckOverflow(promotedExpr, DecimalType.bounded(intDig, 0),
nullOnOverflow)
Review comment:
> when spark.sql.legacy.integralDivide.returnBigint=true anyway, the
overflow should be checked by the toLong method, ie. the "cast" to long, which
is yet to be handled in a different PR.
Yea, it looks ok to me. Thanks for the check!
----------------------------------------------------------------
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.
For queries about this service, please contact Infrastructure at:
[email protected]
With regards,
Apache Git Services
---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]