#15998: Restore some documentation and doctests and a function removed with 
#15466
-------------------------------------+-------------------------------------
       Reporter:  darij              |        Owner:
           Type:  defect             |       Status:  positive_review
       Priority:  major              |    Milestone:  sage-6.2
      Component:  combinatorics      |   Resolution:
       Keywords:                     |    Merged in:
        Authors:  Darij Grinberg     |    Reviewers:  Nathann Cohen
Report Upstream:  N/A                |  Work issues:
         Branch:                     |       Commit:
  public/combinat/re-15466           |  5f67fa2245dec9fbf1670c75cd0a41a6da18959f
   Dependencies:                     |     Stopgaps:
-------------------------------------+-------------------------------------

Comment (by tscrim):

 I've implemented a hybrid algorithm which mostly does a bunch of special
 casing before passing it off to GAP. The one case where it definitively
 does something different is when `2k >= n`, where it is just equal to the
 number of partitions of size `n - k`. Also for `k = 2` where it's equal to
 `n // 2`.

 Some timings:
 {{{
 sage: N = [20, 500, 156234]
 sage: K = [5, 10, 15, 20, 250, 499, 500, 501, 80000]
 sage: for n in N:
 ....:     for k in K:
 ....:         P = Partitions(n, length=k)
 ....:         print n,k
 ....:         %timeit P.cardinality()
 ....:         %timeit P.cardinality('gap')
 ....:
 20 5
 1 loops, best of 3: 7.91 ms per loop
 100 loops, best of 3: 8 ms per loop
 20 10
 100000 loops, best of 3: 10.2 µs per loop
 100 loops, best of 3: 8 ms per loop
 20 15
 100000 loops, best of 3: 10.5 µs per loop
 100 loops, best of 3: 8 ms per loop
 20 20
 100000 loops, best of 3: 1.64 µs per loop
 100 loops, best of 3: 8 ms per loop
 20 250
 100000 loops, best of 3: 1.74 µs per loop
 100 loops, best of 3: 7.99 ms per loop
 20 499
 100000 loops, best of 3: 1.41 µs per loop
 100 loops, best of 3: 8 ms per loop
 20 500
 1000000 loops, best of 3: 1.45 µs per loop
 100 loops, best of 3: 8 ms per loop
 20 501
 1000000 loops, best of 3: 1.42 µs per loop
 100 loops, best of 3: 7.99 ms per loop
 20 80000
 1000000 loops, best of 3: 1.44 µs per loop
 100 loops, best of 3: 8 ms per loop
 500 5
 100 loops, best of 3: 8 ms per loop
 100 loops, best of 3: 8 ms per loop
 500 10
 100 loops, best of 3: 7.99 ms per loop
 100 loops, best of 3: 8 ms per loop
 500 15
 100 loops, best of 3: 8 ms per loop
 100 loops, best of 3: 8 ms per loop
 500 20
 100 loops, best of 3: 8.04 ms per loop
 100 loops, best of 3: 8 ms per loop
 500 250
 100000 loops, best of 3: 10.3 µs per loop
 100 loops, best of 3: 23 ms per loop
 500 499
 100000 loops, best of 3: 10.2 µs per loop
 10 loops, best of 3: 18.5 ms per loop
 500 500
 100000 loops, best of 3: 1.55 µs per loop
 100 loops, best of 3: 8 ms per loop
 500 501
 100000 loops, best of 3: 1.41 µs per loop
 100 loops, best of 3: 8 ms per loop
 500 80000
 100000 loops, best of 3: 1.41 µs per loop
 100 loops, best of 3: 8 ms per loop
 156234 5
 10 loops, best of 3: 132 ms per loop
 10 loops, best of 3: 134 ms per loop
 156234 10
 1 loops, best of 3: 280 ms per loop
 1 loops, best of 3: 264 ms per loop
 156234 15
 1 loops, best of 3: 424 ms per loop
 1 loops, best of 3: 420 ms per loop
 156234 20
 1 loops, best of 3: 656 ms per loop
 1 loops, best of 3: 664 ms per loop
 156234 250
 1 loops, best of 3: 23.6 s per loop
 1 loops, best of 3: 23.2 s per loop
 156234 499
 1 loops, best of 3: 1min 6s per loop
 1 loops, best of 3: 1min 7s per loop

 [Killed because it redirected to gap at this point]

 sage: P = Partitions(4562, length=2800)
 sage: %timeit P.cardinality('gap')
 1 loops, best of 3: 980 ms per loop
 sage: %timeit P.cardinality()
 100000 loops, best of 3: 10.5 µs per loop

 sage: P = Partitions(15623, length=8000)
 sage: %timeit P.cardinality()
 10000 loops, best of 3: 10.1 µs per loop
 sage: %timeit P.cardinality('gap')
 1 loops, best of 3: 15.4 s per loop

 sage: P = Partitions(156234, length=80000)
 sage: %timeit P.cardinality()
 100000 loops, best of 3: 10.3 µs per loop
 sage: %timeit P.cardinality('gap')
 [Took too long, so killed as well]
 }}}
 The hybrid approach could probably be improved further for the special
 case of `3k >= n > 2k`, or up to a small multiple of `k`.

 I also added another special case to the ZS1 algorithm for `k == 1`.

--
Ticket URL: <http://trac.sagemath.org/ticket/15998#comment:30>
Sage <http://www.sagemath.org>
Sage: Creating a Viable Open Source Alternative to Magma, Maple, Mathematica, 
and MATLAB

-- 
You received this message because you are subscribed to the Google Groups 
"sage-trac" group.
To unsubscribe from this group and stop receiving emails from it, send an email 
to [email protected].
To post to this group, send email to [email protected].
Visit this group at http://groups.google.com/group/sage-trac.
For more options, visit https://groups.google.com/d/optout.

Reply via email to