On Mon, 02 Jul 2012, Yaroslav Halchenko wrote:
> Just now spotted that sklearn hasn't migrated to wheezy yet because of

> Tail of log for scikit-learn on armel:

> Traceback (most recent call last):
>   File "/usr/lib/python2.7/dist-packages/nose/case.py", line 197, in runTest
>     self.test(*self.arg)
>   File 
> "/build/buildd-scikit-learn_0.11.0-1-armel-QM4IQa/scikit-learn-0.11.0/debian/python-sklearn/usr/lib/python2.7/dist-packages/sklearn/feature_extraction/tests/test_text.py",
>  line 265, in test_tfidf_no_smoothing
>     assert_equal(len(w), 1)
> AssertionError: 0 != 1

> Tail of log for scikit-learn on mipsel:

>     self.test(*self.arg)
>   File 
> "/build/buildd-scikit-learn_0.11.0-1-mipsel-ZOiuQA/scikit-learn-0.11.0/debian/python-sklearn/usr/lib/python2.6/dist-packages/sklearn/covariance/tests/test_robust_covariance.py",
>  line 28, in test_mcd
>     launch_mcd_on_dataset(100, 5, 20, 0.01, 0.01, 70)
>   File 
> "/build/buildd-scikit-learn_0.11.0-1-mipsel-ZOiuQA/scikit-learn-0.11.0/debian/python-sklearn/usr/lib/python2.6/dist-packages/sklearn/covariance/tests/test_robust_covariance.py",
>  line 67, in launch_mcd_on_dataset
>     assert(error_cov < tol_cov)
> AssertionError

actually this one can fail on my laptop ... since no seeding facility is
available ( ;-) ), here is the line I ran

( set -e; for s in {1..1000}; do echo seed=$s; SKLEARN_SEED=$s PYTHONPATH=$PWD 
nosetests -s -v sklearn/covariance/tests/test_robust_covariance.py; done; )

and here is the cut out of the failing output:

======================================================================
FAIL: Tests the FastMCD algorithm implementation
----------------------------------------------------------------------
Traceback (most recent call last):
  File "/usr/lib/python2.7/dist-packages/nose/case.py", line 197, in runTest
    self.test(*self.arg)
  File 
"/home/yoh/deb/gits/scikit-learn/sklearn/covariance/tests/test_robust_covariance.py",
 line 28, in test_mcd
    launch_mcd_on_dataset(100, 5, 20, 0.01, 0.01, 70)
  File 
"/home/yoh/deb/gits/scikit-learn/sklearn/covariance/tests/test_robust_covariance.py",
 line 67, in launch_mcd_on_dataset
    assert(error_cov < tol_cov)
AssertionError: 
    0.0049211381236789111 = <module 'numpy' from 
'/usr/lib/pymodules/python2.7/numpy/__init__.pyc'>.mean((array([[ 1.76405235,  
0.40015721,  0.97873798,  2.2408932 ,  1.86755799],
           [-0.97727788,  0.95008842, -0.15135721, -0.10321885,  0.4105985 ],
...
           [ 0.16505432,  0.11554982, -0.01784241,  0.14433467,  0.61933516]])) 
** 2)
    assert(0.010874013902418312 < 0.01)
    assert(<module 'numpy' from 
'/usr/lib/pymodules/python2.7/numpy/__init__.pyc'>.sum(array([ True,  True,  
True,  True, False,  True,  True,  True,  True,
  ....
            True,  True, False,  True, False,  True, False, False, False,  
True], dtype=bool)) >= 70)


I will try now on master

-- 
Yaroslav O. Halchenko
Postdoctoral Fellow,   Department of Psychological and Brain Sciences
Dartmouth College, 419 Moore Hall, Hinman Box 6207, Hanover, NH 03755
Phone: +1 (603) 646-9834                       Fax: +1 (603) 646-1419
WWW:   http://www.linkedin.com/in/yarik        

------------------------------------------------------------------------------
Live Security Virtual Conference
Exclusive live event will cover all the ways today's security and 
threat landscape has changed and how IT managers can respond. Discussions 
will include endpoint security, mobile security and the latest in malware 
threats. http://www.accelacomm.com/jaw/sfrnl04242012/114/50122263/
_______________________________________________
Scikit-learn-general mailing list
[email protected]
https://lists.sourceforge.net/lists/listinfo/scikit-learn-general

Reply via email to