Hi Yaroslav,

I cannot replicate this (just checked quickly). I am travelling, so I
cannot spend too much time on it, but we'll definitely look at it and try
to address it.

Gael

On Mon, Jul 02, 2012 at 01:37:31PM -0400, Yaroslav Halchenko wrote:
> > >     self.test(*self.arg)
> > >   File 
> > > "/build/buildd-scikit-learn_0.11.0-1-mipsel-ZOiuQA/scikit-learn-0.11.0/debian/python-sklearn/usr/lib/python2.6/dist-packages/sklearn/covariance/tests/test_robust_covariance.py",
> > >  line 28, in test_mcd
> > >     launch_mcd_on_dataset(100, 5, 20, 0.01, 0.01, 70)
> > >   File 
> > > "/build/buildd-scikit-learn_0.11.0-1-mipsel-ZOiuQA/scikit-learn-0.11.0/debian/python-sklearn/usr/lib/python2.6/dist-packages/sklearn/covariance/tests/test_robust_covariance.py",
> > >  line 67, in launch_mcd_on_dataset
> > >     assert(error_cov < tol_cov)
> > > AssertionError

> ok -- that one reliably replicates on current master
> 0.11-branching-379-g898d953 with

> SKLEARN_SEED=113 PYTHONPATH=$PWD nosetests -s -v 
> sklearn/covariance/tests/test_robust_covariance.py

> if you could seed it with this seed prior the tests


> > actually this one can fail on my laptop ... since no seeding facility is
> > available ( ;-) ), here is the line I ran

> > ( set -e; for s in {1..1000}; do echo seed=$s; SKLEARN_SEED=$s 
> > PYTHONPATH=$PWD nosetests -s -v 
> > sklearn/covariance/tests/test_robust_covariance.py; done; )

> > and here is the cut out of the failing output:

> > ======================================================================
> > FAIL: Tests the FastMCD algorithm implementation
> > ----------------------------------------------------------------------
> > Traceback (most recent call last):
> >   File "/usr/lib/python2.7/dist-packages/nose/case.py", line 197, in runTest
> >     self.test(*self.arg)
> >   File 
> > "/home/yoh/deb/gits/scikit-learn/sklearn/covariance/tests/test_robust_covariance.py",
> >  line 28, in test_mcd
> >     launch_mcd_on_dataset(100, 5, 20, 0.01, 0.01, 70)
> >   File 
> > "/home/yoh/deb/gits/scikit-learn/sklearn/covariance/tests/test_robust_covariance.py",
> >  line 67, in launch_mcd_on_dataset
> >     assert(error_cov < tol_cov)
> > AssertionError: 
> >     0.0049211381236789111 = <module 'numpy' from 
> > '/usr/lib/pymodules/python2.7/numpy/__init__.pyc'>.mean((array([[ 
> > 1.76405235,  0.40015721,  0.97873798,  2.2408932 ,  1.86755799],
> >            [-0.97727788,  0.95008842, -0.15135721, -0.10321885,  0.4105985 
> > ],
> > ...
> >            [ 0.16505432,  0.11554982, -0.01784241,  0.14433467,  
> > 0.61933516]])) ** 2)
> >     assert(0.010874013902418312 < 0.01)
> >     assert(<module 'numpy' from 
> > '/usr/lib/pymodules/python2.7/numpy/__init__.pyc'>.sum(array([ True,  True, 
> >  True,  True, False,  True,  True,  True,  True,
> >   ....
> >             True,  True, False,  True, False,  True, False, False, False,  
> > True], dtype=bool)) >= 70)


> > I will try now on master
-- 
    Gael Varoquaux
    Researcher, INRIA Parietal
    Laboratoire de Neuro-Imagerie Assistee par Ordinateur
    NeuroSpin/CEA Saclay , Bat 145, 91191 Gif-sur-Yvette France
    Phone:  ++ 33-1-69-08-79-68
    http://gael-varoquaux.info            http://twitter.com/GaelVaroquaux

------------------------------------------------------------------------------
Live Security Virtual Conference
Exclusive live event will cover all the ways today's security and 
threat landscape has changed and how IT managers can respond. Discussions 
will include endpoint security, mobile security and the latest in malware 
threats. http://www.accelacomm.com/jaw/sfrnl04242012/114/50122263/
_______________________________________________
Scikit-learn-general mailing list
[email protected]
https://lists.sourceforge.net/lists/listinfo/scikit-learn-general

Reply via email to