> >     self.test(*self.arg)
> >   File 
> > "/build/buildd-scikit-learn_0.11.0-1-mipsel-ZOiuQA/scikit-learn-0.11.0/debian/python-sklearn/usr/lib/python2.6/dist-packages/sklearn/covariance/tests/test_robust_covariance.py",
> >  line 28, in test_mcd
> >     launch_mcd_on_dataset(100, 5, 20, 0.01, 0.01, 70)
> >   File 
> > "/build/buildd-scikit-learn_0.11.0-1-mipsel-ZOiuQA/scikit-learn-0.11.0/debian/python-sklearn/usr/lib/python2.6/dist-packages/sklearn/covariance/tests/test_robust_covariance.py",
> >  line 67, in launch_mcd_on_dataset
> >     assert(error_cov < tol_cov)
> > AssertionError

ok -- that one reliably replicates on current master
0.11-branching-379-g898d953 with

SKLEARN_SEED=113 PYTHONPATH=$PWD nosetests -s -v 
sklearn/covariance/tests/test_robust_covariance.py

if you could seed it with this seed prior the tests


> actually this one can fail on my laptop ... since no seeding facility is
> available ( ;-) ), here is the line I ran

> ( set -e; for s in {1..1000}; do echo seed=$s; SKLEARN_SEED=$s 
> PYTHONPATH=$PWD nosetests -s -v 
> sklearn/covariance/tests/test_robust_covariance.py; done; )

> and here is the cut out of the failing output:

> ======================================================================
> FAIL: Tests the FastMCD algorithm implementation
> ----------------------------------------------------------------------
> Traceback (most recent call last):
>   File "/usr/lib/python2.7/dist-packages/nose/case.py", line 197, in runTest
>     self.test(*self.arg)
>   File 
> "/home/yoh/deb/gits/scikit-learn/sklearn/covariance/tests/test_robust_covariance.py",
>  line 28, in test_mcd
>     launch_mcd_on_dataset(100, 5, 20, 0.01, 0.01, 70)
>   File 
> "/home/yoh/deb/gits/scikit-learn/sklearn/covariance/tests/test_robust_covariance.py",
>  line 67, in launch_mcd_on_dataset
>     assert(error_cov < tol_cov)
> AssertionError: 
>     0.0049211381236789111 = <module 'numpy' from 
> '/usr/lib/pymodules/python2.7/numpy/__init__.pyc'>.mean((array([[ 1.76405235, 
>  0.40015721,  0.97873798,  2.2408932 ,  1.86755799],
>            [-0.97727788,  0.95008842, -0.15135721, -0.10321885,  0.4105985 ],
> ...
>            [ 0.16505432,  0.11554982, -0.01784241,  0.14433467,  
> 0.61933516]])) ** 2)
>     assert(0.010874013902418312 < 0.01)
>     assert(<module 'numpy' from 
> '/usr/lib/pymodules/python2.7/numpy/__init__.pyc'>.sum(array([ True,  True,  
> True,  True, False,  True,  True,  True,  True,
>   ....
>             True,  True, False,  True, False,  True, False, False, False,  
> True], dtype=bool)) >= 70)


> I will try now on master
-- 
Yaroslav O. Halchenko
Postdoctoral Fellow,   Department of Psychological and Brain Sciences
Dartmouth College, 419 Moore Hall, Hinman Box 6207, Hanover, NH 03755
Phone: +1 (603) 646-9834                       Fax: +1 (603) 646-1419
WWW:   http://www.linkedin.com/in/yarik        

------------------------------------------------------------------------------
Live Security Virtual Conference
Exclusive live event will cover all the ways today's security and 
threat landscape has changed and how IT managers can respond. Discussions 
will include endpoint security, mobile security and the latest in malware 
threats. http://www.accelacomm.com/jaw/sfrnl04242012/114/50122263/
_______________________________________________
Scikit-learn-general mailing list
[email protected]
https://lists.sourceforge.net/lists/listinfo/scikit-learn-general

Reply via email to