[obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Questão de Cardinalidade

2018-01-21 Por tôpico Anderson Torres
Em 16 de janeiro de 2018 13:50, Bernardo Freitas Paulo da Costa
 escreveu:
> 2018-01-16 1:10 GMT-02:00 Anderson Torres :
>> Eu na verdade pensei ao contrário:
>>
>> Começamos com o conjunto de todos os subconjuntos de N. Cada conjunto
>> será representado por uma string infinita de zeros e unzes, da
>> seguinte forma: Se o conjunto contiver o natural x, o x-ésimo
>> caractere desta string será 1; caso contrário, será 0.
>>
>> Botando zero-vírgula na frente, obtemos um número real escrito em base
>> 2, contido no intervalo [0,1] (para efeito de completude do argumento,
>> admitiremos strings infinitas de 1zes).
>>
>> Para cada real em [0,1], bastaria escrever na base 2 e criar um
>> conjunto a partir daí, seguindo os passos acima (se o X-esimo dígito é
>> 1, escolhe X, caso contrário, despreza X).
>>
>> Isso prova que existe uma bijeção entre o conjunto das partes de N e o
>> intervalo [0,1].
>
> Acho que tanto a sua demonstração como a do Sávio têm um problema:
>
> 0,0111... = 0.1...
>
> Isso quer dizer que o conjunto {0} e o conjunto {1,2,3,...} são
> enviados no mesmo número real (conhecido como 1/2, ou 0.5 em decimal).
>
> Eu sempre acho muita "forçação de barra" tentar exibir uma bijeção.
> 99% das vezes, é mais esforço do que precisa, sem ganhar muito
> entendimento.  Ou, como neste caso, papa-se uma mosca...  Minha
> sugestão é exibir uma sobrejeção de P(IN) em IR, e depois uma
> sobrejeção de IR em P(IN).  A primeira está garantida, pois basta
> compor a construção do número binário em [0,1] com qualquer sobrejeção
> deste conjunto em R.  Uma sobrejeção simples é mandar 0 e 1 "pra
> qualquer lugar", e depois usar uma bijeção de (0,1) em IR.

Claro que tem a questão das formalizações, mas acho que elas são
trabalho demais para compreensão de menos. Só quis exibir algumas
funções que podem ser o que precisamos.


>
> Deixo para vocês pensarem como fazer para exibir uma sobrejeção de IR
> nas partes de IN.  Dica: IR contém [0,1) e [1,2).

Diretamente? Ainda acho que bijetar toda a reta em um de seus
segmentos uma jogada mais interessante...

>
> Abraços,
> --
> Bernardo Freitas Paulo da Costa
>
> --
> Esta mensagem foi verificada pelo sistema de antivírus e
>  acredita-se estar livre de perigo.
>
>
> =
> Instru�ões para entrar na lista, sair da lista e usar a lista em
> http://www.mat.puc-rio.br/~obmlistas/obm-l.html
> =

-- 
Esta mensagem foi verificada pelo sistema de antiv�rus e
 acredita-se estar livre de perigo.


=
Instru��es para entrar na lista, sair da lista e usar a lista em
http://www.mat.puc-rio.br/~obmlistas/obm-l.html
=


[obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Questão de Cardinalidade

2018-01-16 Por tôpico Bernardo Freitas Paulo da Costa
2018-01-16 14:11 GMT-02:00 Igor Caetano Diniz :
> Fala Bernardo, tudo certo?
> Mas sera que eu conseguiria provar que esses números não seriam uma
> quantidade enumeravel de pontos entre 0 e 1 e, então, como é enumeravel, eu
> consigo pegar uma quantidade enumeravel em P(N) para esses pontos.

Sim, de fato são enumeráveis (é um exercício legal provar isto).  Dá
um pouco mais de trabalho "modificar" as bijeções para corrigir o que
está acontecendo nestes pontos

> Acha que
> seria ruim?

Não digo que seja ruim, só acho que é "trabalho demais" quando você
poderia ir por um caminho mais simples ;-)

Abraços,
-- 
Bernardo Freitas Paulo da Costa

-- 
Esta mensagem foi verificada pelo sistema de antiv�rus e
 acredita-se estar livre de perigo.


=
Instru��es para entrar na lista, sair da lista e usar a lista em
http://www.mat.puc-rio.br/~obmlistas/obm-l.html
=


[obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Questão de Cardinalidade

2018-01-16 Por tôpico Igor Caetano Diniz
Fala Bernardo, tudo certo?
Mas sera que eu conseguiria provar que esses números não seriam uma
quantidade enumeravel de pontos entre 0 e 1 e, então, como é enumeravel, eu
consigo pegar uma quantidade enumeravel em P(N) para esses pontos. Acha que
seria ruim?

Abraço

On Jan 16, 2018 13:59, "Bernardo Freitas Paulo da Costa" <
bernardo...@gmail.com> wrote:

> 2018-01-16 1:10 GMT-02:00 Anderson Torres :
> > Eu na verdade pensei ao contrário:
> >
> > Começamos com o conjunto de todos os subconjuntos de N. Cada conjunto
> > será representado por uma string infinita de zeros e unzes, da
> > seguinte forma: Se o conjunto contiver o natural x, o x-ésimo
> > caractere desta string será 1; caso contrário, será 0.
> >
> > Botando zero-vírgula na frente, obtemos um número real escrito em base
> > 2, contido no intervalo [0,1] (para efeito de completude do argumento,
> > admitiremos strings infinitas de 1zes).
> >
> > Para cada real em [0,1], bastaria escrever na base 2 e criar um
> > conjunto a partir daí, seguindo os passos acima (se o X-esimo dígito é
> > 1, escolhe X, caso contrário, despreza X).
> >
> > Isso prova que existe uma bijeção entre o conjunto das partes de N e o
> > intervalo [0,1].
>
> Acho que tanto a sua demonstração como a do Sávio têm um problema:
>
> 0,0111... = 0.1...
>
> Isso quer dizer que o conjunto {0} e o conjunto {1,2,3,...} são
> enviados no mesmo número real (conhecido como 1/2, ou 0.5 em decimal).
>
> Eu sempre acho muita "forçação de barra" tentar exibir uma bijeção.
> 99% das vezes, é mais esforço do que precisa, sem ganhar muito
> entendimento.  Ou, como neste caso, papa-se uma mosca...  Minha
> sugestão é exibir uma sobrejeção de P(IN) em IR, e depois uma
> sobrejeção de IR em P(IN).  A primeira está garantida, pois basta
> compor a construção do número binário em [0,1] com qualquer sobrejeção
> deste conjunto em R.  Uma sobrejeção simples é mandar 0 e 1 "pra
> qualquer lugar", e depois usar uma bijeção de (0,1) em IR.
>
> Deixo para vocês pensarem como fazer para exibir uma sobrejeção de IR
> nas partes de IN.  Dica: IR contém [0,1) e [1,2).
>
> Abraços,
> --
> Bernardo Freitas Paulo da Costa
>
> --
> Esta mensagem foi verificada pelo sistema de antivírus e
>  acredita-se estar livre de perigo.
>
>
> =
> Instru�ões para entrar na lista, sair da lista e usar a lista em
> http://www.mat.puc-rio.br/~obmlistas/obm-l.html
> =
>

-- 
Esta mensagem foi verificada pelo sistema de antiv�rus e
 acredita-se estar livre de perigo.



[obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Questão de Cardinalidade

2018-01-16 Por tôpico Bernardo Freitas Paulo da Costa
2018-01-16 1:10 GMT-02:00 Anderson Torres :
> Eu na verdade pensei ao contrário:
>
> Começamos com o conjunto de todos os subconjuntos de N. Cada conjunto
> será representado por uma string infinita de zeros e unzes, da
> seguinte forma: Se o conjunto contiver o natural x, o x-ésimo
> caractere desta string será 1; caso contrário, será 0.
>
> Botando zero-vírgula na frente, obtemos um número real escrito em base
> 2, contido no intervalo [0,1] (para efeito de completude do argumento,
> admitiremos strings infinitas de 1zes).
>
> Para cada real em [0,1], bastaria escrever na base 2 e criar um
> conjunto a partir daí, seguindo os passos acima (se o X-esimo dígito é
> 1, escolhe X, caso contrário, despreza X).
>
> Isso prova que existe uma bijeção entre o conjunto das partes de N e o
> intervalo [0,1].

Acho que tanto a sua demonstração como a do Sávio têm um problema:

0,0111... = 0.1...

Isso quer dizer que o conjunto {0} e o conjunto {1,2,3,...} são
enviados no mesmo número real (conhecido como 1/2, ou 0.5 em decimal).

Eu sempre acho muita "forçação de barra" tentar exibir uma bijeção.
99% das vezes, é mais esforço do que precisa, sem ganhar muito
entendimento.  Ou, como neste caso, papa-se uma mosca...  Minha
sugestão é exibir uma sobrejeção de P(IN) em IR, e depois uma
sobrejeção de IR em P(IN).  A primeira está garantida, pois basta
compor a construção do número binário em [0,1] com qualquer sobrejeção
deste conjunto em R.  Uma sobrejeção simples é mandar 0 e 1 "pra
qualquer lugar", e depois usar uma bijeção de (0,1) em IR.

Deixo para vocês pensarem como fazer para exibir uma sobrejeção de IR
nas partes de IN.  Dica: IR contém [0,1) e [1,2).

Abraços,
-- 
Bernardo Freitas Paulo da Costa

-- 
Esta mensagem foi verificada pelo sistema de antiv�rus e
 acredita-se estar livre de perigo.


=
Instru��es para entrar na lista, sair da lista e usar a lista em
http://www.mat.puc-rio.br/~obmlistas/obm-l.html
=


[obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Questão de Cardinalidade

2018-01-16 Por tôpico Igor Caetano Diniz
Uma ideia legal Para provar que (-1,1) tem bijeção com R, seria usar f(x) =
x/(x^2-1) provando que ela eh injetiva e sobrejetiva

On Jan 16, 2018 01:20, "Anderson Torres" 
wrote:

> Eu na verdade pensei ao contrário:
>
> Começamos com o conjunto de todos os subconjuntos de N. Cada conjunto
> será representado por uma string infinita de zeros e unzes, da
> seguinte forma: Se o conjunto contiver o natural x, o x-ésimo
> caractere desta string será 1; caso contrário, será 0.
>
> Botando zero-vírgula na frente, obtemos um número real escrito em base
> 2, contido no intervalo [0,1] (para efeito de completude do argumento,
> admitiremos strings infinitas de 1zes).
>
> Para cada real em [0,1], bastaria escrever na base 2 e criar um
> conjunto a partir daí, seguindo os passos acima (se o X-esimo dígito é
> 1, escolhe X, caso contrário, despreza X).
>
> Isso prova que existe uma bijeção entre o conjunto das partes de N e o
> intervalo [0,1].
>
> Agora, provar que [0,1] tem a mesma cardinalidade que R é mais
> chatinho. Dá para pensar geometricamente:
>
> Primeiro, [0,1] tem a mesma cardinalidade de [-1,+1], basta dobrar e
> tirar 1 (f(x)=2x-1).
>
> Agora, como demonstrar que [-1,+1] bijeta com todos os reais? Bem,
> isso não me parece complicado: se pensarmos na inversão de centro zero
> e raio um, o elemento X<1 vai ser levado em 1/X>1. Assim, todo número
> fora de [-1,+1] é bijetado com um dentro de [-1,+1] - podemos
> convencionar que -1,0,+1 vão neles mesmos.
>
> Para sermos mais precisos, o intervalo [0,1] é bijetado em [1,+inf], e
> o intervalo [-1,0] em [-inf,-1]
>
> Agora vem o toque final: acrescente 1 em cada elemento do intervalo
> [-inf,-1], diminua 1 em cada elemento de [1,+inf] e una os resultados.
> Com isso, obtemos uma bijeção de [-inf,-1] união [1,+inf] com toda a
> reta!
>
> E acabou!
> Em 15 de janeiro de 2018 17:11, Igor Caetano Diniz
>  escreveu:
> > Olá Sávio,
> > Muito obrigado. Tava pensando em algo parecido mas agora voce esclareceu
> > bastante.
> > Abraços
> >
> > On Jan 15, 2018 16:55, "Sávio Ribas"  wrote:
> >>
> >> Boa tarde!
> >> A primeira parte servirá para mostrar que a cardinalidade de IR é igual
> à
> >> cardinalidade de [0,1].
> >> Não é difícil mostrar que a reta tem a mesma cardinalidade que, por
> >> exemplo, o intervalo (-1,1) -- basta tomar a bijeção f: (-1,1) -> IR
> dada
> >> por f(x) = tg(pi*x/2).
> >> O passo seguinte seria mostrar que (-1,1) tem a mesma cardinalidade que
> o
> >> intervalo (fechado) [0,1], e para isso vamos tomar a bijeção g: (0,1) ->
> >> (-1,1) dada por g(x) = 2x-1. Mas note que "faltam o pontos 0 e 1" no
> domínio
> >> de g. Vamos acrescentar esses pontos, tomando um conjunto enumerável A =
> >> {a_1, a_2, a_3,...} contido em (0,1) e fazendo o seguinte: Seja B = {0,
> 1,
> >> a_1, a_2, a_3, ...}. A função h: (0,1) -> [0,1] dada por h(x) = x se x
> não
> >> está em A, h(a_1) = 0, h(a_2) = 1, h(a_n) = a_{n-2} se n>2 é uma bijeção
> >> (verifique).
> >> Assim, a função [ h o g^(-1) o f^(-1) ]: IR -> [0,1] é uma bijeção. Daí,
> >> concluímos que IR e [0,1] possuem a mesma cardinalidade.
> >>
> >> Vamos agora mostrar que as cardinalidades de [0,1] e IN são iguais. Seja
> >> 0,b_1b_2b_3... a representação binária de um número em [0,1] com
> infinitas
> >> casas (por exemplo, 1 será representado por 0,1...). Essa escrita
> >> binária dos elementos de [0,1] gera uma bijeção com as partes de IN da
> >> seguinte forma: k perntence a um subconjunto M dos naturais se e
> somente se
> >> b_k = 1 (por exemplo, o vazio corresponde ao 0 = 0,..., IN
> corresponde
> >> ao 1 = 0,... e {2,3,5,7} corresponde a 0,01101010...). Dessa
> forma,
> >> construímos uma bijeção entre P(IN) e [0,1].
> >>
> >> Concluímos que P(IN) e IR possuem mesma cardinalidade, pois ambos estão
> em
> >> bijeção com [0,1].
> >>
> >> Sávio
> >>
> >>
> >> Em 15 de jan de 2018 13:43, "Igor Caetano Diniz" <
> icaetanodi...@gmail.com>
> >> escreveu:
> >>>
> >>> Olá a todos, estou com uma dúvida para provar uma questão(Sem usar
> >>> hipótese do contínuo)
> >>>
> >>> Prove que a cardinalidade do conjunto das partes dos números naturais é
> >>> igual à cardinalidade dos reais, i.e., |P(N)| = |R|
> >>>
> >>>
> >>> quem puder ajudar, agradeço.
> >>>
> >>> Abraços
> >>>
> >>> --
> >>> Esta mensagem foi verificada pelo sistema de antivírus e
> >>> acredita-se estar livre de perigo.
> >>
> >>
> >> --
> >> Esta mensagem foi verificada pelo sistema de antivírus e
> >> acredita-se estar livre de perigo.
> >
> >
> > --
> > Esta mensagem foi verificada pelo sistema de antivírus e
> > acredita-se estar livre de perigo.
>
> --
> Esta mensagem foi verificada pelo sistema de antivírus e
>  acredita-se estar livre de perigo.
>
>
> =
> Instru�ões para entrar na lista, sair da lista e usar a lista em
> http://www.mat.puc-rio.br/~obmlistas/obm-l.html
> 

[obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Questão de Cardinalidade

2018-01-15 Por tôpico Anderson Torres
Eu na verdade pensei ao contrário:

Começamos com o conjunto de todos os subconjuntos de N. Cada conjunto
será representado por uma string infinita de zeros e unzes, da
seguinte forma: Se o conjunto contiver o natural x, o x-ésimo
caractere desta string será 1; caso contrário, será 0.

Botando zero-vírgula na frente, obtemos um número real escrito em base
2, contido no intervalo [0,1] (para efeito de completude do argumento,
admitiremos strings infinitas de 1zes).

Para cada real em [0,1], bastaria escrever na base 2 e criar um
conjunto a partir daí, seguindo os passos acima (se o X-esimo dígito é
1, escolhe X, caso contrário, despreza X).

Isso prova que existe uma bijeção entre o conjunto das partes de N e o
intervalo [0,1].

Agora, provar que [0,1] tem a mesma cardinalidade que R é mais
chatinho. Dá para pensar geometricamente:

Primeiro, [0,1] tem a mesma cardinalidade de [-1,+1], basta dobrar e
tirar 1 (f(x)=2x-1).

Agora, como demonstrar que [-1,+1] bijeta com todos os reais? Bem,
isso não me parece complicado: se pensarmos na inversão de centro zero
e raio um, o elemento X<1 vai ser levado em 1/X>1. Assim, todo número
fora de [-1,+1] é bijetado com um dentro de [-1,+1] - podemos
convencionar que -1,0,+1 vão neles mesmos.

Para sermos mais precisos, o intervalo [0,1] é bijetado em [1,+inf], e
o intervalo [-1,0] em [-inf,-1]

Agora vem o toque final: acrescente 1 em cada elemento do intervalo
[-inf,-1], diminua 1 em cada elemento de [1,+inf] e una os resultados.
Com isso, obtemos uma bijeção de [-inf,-1] união [1,+inf] com toda a
reta!

E acabou!
Em 15 de janeiro de 2018 17:11, Igor Caetano Diniz
 escreveu:
> Olá Sávio,
> Muito obrigado. Tava pensando em algo parecido mas agora voce esclareceu
> bastante.
> Abraços
>
> On Jan 15, 2018 16:55, "Sávio Ribas"  wrote:
>>
>> Boa tarde!
>> A primeira parte servirá para mostrar que a cardinalidade de IR é igual à
>> cardinalidade de [0,1].
>> Não é difícil mostrar que a reta tem a mesma cardinalidade que, por
>> exemplo, o intervalo (-1,1) -- basta tomar a bijeção f: (-1,1) -> IR dada
>> por f(x) = tg(pi*x/2).
>> O passo seguinte seria mostrar que (-1,1) tem a mesma cardinalidade que o
>> intervalo (fechado) [0,1], e para isso vamos tomar a bijeção g: (0,1) ->
>> (-1,1) dada por g(x) = 2x-1. Mas note que "faltam o pontos 0 e 1" no domínio
>> de g. Vamos acrescentar esses pontos, tomando um conjunto enumerável A =
>> {a_1, a_2, a_3,...} contido em (0,1) e fazendo o seguinte: Seja B = {0, 1,
>> a_1, a_2, a_3, ...}. A função h: (0,1) -> [0,1] dada por h(x) = x se x não
>> está em A, h(a_1) = 0, h(a_2) = 1, h(a_n) = a_{n-2} se n>2 é uma bijeção
>> (verifique).
>> Assim, a função [ h o g^(-1) o f^(-1) ]: IR -> [0,1] é uma bijeção. Daí,
>> concluímos que IR e [0,1] possuem a mesma cardinalidade.
>>
>> Vamos agora mostrar que as cardinalidades de [0,1] e IN são iguais. Seja
>> 0,b_1b_2b_3... a representação binária de um número em [0,1] com infinitas
>> casas (por exemplo, 1 será representado por 0,1...). Essa escrita
>> binária dos elementos de [0,1] gera uma bijeção com as partes de IN da
>> seguinte forma: k perntence a um subconjunto M dos naturais se e somente se
>> b_k = 1 (por exemplo, o vazio corresponde ao 0 = 0,..., IN corresponde
>> ao 1 = 0,... e {2,3,5,7} corresponde a 0,01101010...). Dessa forma,
>> construímos uma bijeção entre P(IN) e [0,1].
>>
>> Concluímos que P(IN) e IR possuem mesma cardinalidade, pois ambos estão em
>> bijeção com [0,1].
>>
>> Sávio
>>
>>
>> Em 15 de jan de 2018 13:43, "Igor Caetano Diniz" 
>> escreveu:
>>>
>>> Olá a todos, estou com uma dúvida para provar uma questão(Sem usar
>>> hipótese do contínuo)
>>>
>>> Prove que a cardinalidade do conjunto das partes dos números naturais é
>>> igual à cardinalidade dos reais, i.e., |P(N)| = |R|
>>>
>>>
>>> quem puder ajudar, agradeço.
>>>
>>> Abraços
>>>
>>> --
>>> Esta mensagem foi verificada pelo sistema de antivírus e
>>> acredita-se estar livre de perigo.
>>
>>
>> --
>> Esta mensagem foi verificada pelo sistema de antivírus e
>> acredita-se estar livre de perigo.
>
>
> --
> Esta mensagem foi verificada pelo sistema de antivírus e
> acredita-se estar livre de perigo.

-- 
Esta mensagem foi verificada pelo sistema de antiv�rus e
 acredita-se estar livre de perigo.


=
Instru��es para entrar na lista, sair da lista e usar a lista em
http://www.mat.puc-rio.br/~obmlistas/obm-l.html
=


[obm-l] Re: [obm-l] Re: [obm-l] Questão de Cardinalidade

2018-01-15 Por tôpico Igor Caetano Diniz
Olá Sávio,
Muito obrigado. Tava pensando em algo parecido mas agora voce esclareceu
bastante.
Abraços

On Jan 15, 2018 16:55, "Sávio Ribas"  wrote:

> Boa tarde!
> A primeira parte servirá para mostrar que a cardinalidade de IR é igual à
> cardinalidade de [0,1].
> Não é difícil mostrar que a reta tem a mesma cardinalidade que, por
> exemplo, o intervalo (-1,1) -- basta tomar a bijeção f: (-1,1) -> IR dada
> por f(x) = tg(pi*x/2).
> O passo seguinte seria mostrar que (-1,1) tem a mesma cardinalidade que o
> intervalo (fechado) [0,1], e para isso vamos tomar a bijeção g: (0,1) ->
> (-1,1) dada por g(x) = 2x-1. Mas note que "faltam o pontos 0 e 1" no
> domínio de g. Vamos acrescentar esses pontos, tomando um conjunto
> enumerável A = {a_1, a_2, a_3,...} contido em (0,1) e fazendo o seguinte:
> Seja B = {0, 1, a_1, a_2, a_3, ...}. A função h: (0,1) -> [0,1] dada por
> h(x) = x se x não está em A, h(a_1) = 0, h(a_2) = 1, h(a_n) = a_{n-2} se
> n>2 é uma bijeção (verifique).
> Assim, a função [ h o g^(-1) o f^(-1) ]: IR -> [0,1] é uma bijeção. Daí,
> concluímos que IR e [0,1] possuem a mesma cardinalidade.
>
> Vamos agora mostrar que as cardinalidades de [0,1] e IN são iguais. Seja
> 0,b_1b_2b_3... a representação binária de um número em [0,1] com infinitas
> casas (por exemplo, 1 será representado por 0,1...). Essa escrita
> binária dos elementos de [0,1] gera uma bijeção com as partes de IN da
> seguinte forma: k perntence a um subconjunto M dos naturais se e somente se
> b_k = 1 (por exemplo, o vazio corresponde ao 0 = 0,..., IN corresponde
> ao 1 = 0,... e {2,3,5,7} corresponde a 0,01101010...). Dessa forma,
> construímos uma bijeção entre P(IN) e [0,1].
>
> Concluímos que P(IN) e IR possuem mesma cardinalidade, pois ambos estão em
> bijeção com [0,1].
>
> Sávio
>
>
> Em 15 de jan de 2018 13:43, "Igor Caetano Diniz" 
> escreveu:
>
>> Olá a todos, estou com uma dúvida para provar uma questão(Sem usar
>> hipótese do contínuo)
>>
>> Prove que a cardinalidade do conjunto das partes dos números naturais é
>> igual à cardinalidade dos reais, i.e., |P(N)| = |R|
>>
>>
>> quem puder ajudar, agradeço.
>>
>> Abraços
>>
>> --
>> Esta mensagem foi verificada pelo sistema de antivírus e
>> acredita-se estar livre de perigo.
>
>
> --
> Esta mensagem foi verificada pelo sistema de antivírus e
> acredita-se estar livre de perigo.

-- 
Esta mensagem foi verificada pelo sistema de antiv�rus e
 acredita-se estar livre de perigo.



[obm-l] Re: [obm-l] Questão de Cardinalidade

2018-01-15 Por tôpico Sávio Ribas
Boa tarde!
A primeira parte servirá para mostrar que a cardinalidade de IR é igual à
cardinalidade de [0,1].
Não é difícil mostrar que a reta tem a mesma cardinalidade que, por
exemplo, o intervalo (-1,1) -- basta tomar a bijeção f: (-1,1) -> IR dada
por f(x) = tg(pi*x/2).
O passo seguinte seria mostrar que (-1,1) tem a mesma cardinalidade que o
intervalo (fechado) [0,1], e para isso vamos tomar a bijeção g: (0,1) ->
(-1,1) dada por g(x) = 2x-1. Mas note que "faltam o pontos 0 e 1" no
domínio de g. Vamos acrescentar esses pontos, tomando um conjunto
enumerável A = {a_1, a_2, a_3,...} contido em (0,1) e fazendo o seguinte:
Seja B = {0, 1, a_1, a_2, a_3, ...}. A função h: (0,1) -> [0,1] dada por
h(x) = x se x não está em A, h(a_1) = 0, h(a_2) = 1, h(a_n) = a_{n-2} se
n>2 é uma bijeção (verifique).
Assim, a função [ h o g^(-1) o f^(-1) ]: IR -> [0,1] é uma bijeção. Daí,
concluímos que IR e [0,1] possuem a mesma cardinalidade.

Vamos agora mostrar que as cardinalidades de [0,1] e IN são iguais. Seja
0,b_1b_2b_3... a representação binária de um número em [0,1] com infinitas
casas (por exemplo, 1 será representado por 0,1...). Essa escrita
binária dos elementos de [0,1] gera uma bijeção com as partes de IN da
seguinte forma: k perntence a um subconjunto M dos naturais se e somente se
b_k = 1 (por exemplo, o vazio corresponde ao 0 = 0,..., IN corresponde
ao 1 = 0,... e {2,3,5,7} corresponde a 0,01101010...). Dessa forma,
construímos uma bijeção entre P(IN) e [0,1].

Concluímos que P(IN) e IR possuem mesma cardinalidade, pois ambos estão em
bijeção com [0,1].

Sávio


Em 15 de jan de 2018 13:43, "Igor Caetano Diniz" 
escreveu:

> Olá a todos, estou com uma dúvida para provar uma questão(Sem usar
> hipótese do contínuo)
>
> Prove que a cardinalidade do conjunto das partes dos números naturais é
> igual à cardinalidade dos reais, i.e., |P(N)| = |R|
>
>
> quem puder ajudar, agradeço.
>
> Abraços
>
> --
> Esta mensagem foi verificada pelo sistema de antivírus e
> acredita-se estar livre de perigo.

-- 
Esta mensagem foi verificada pelo sistema de antiv�rus e
 acredita-se estar livre de perigo.



[obm-l] Questão de Cardinalidade

2018-01-15 Por tôpico Igor Caetano Diniz
Olá a todos, estou com uma dúvida para provar uma questão(Sem usar hipótese
do contínuo)

Prove que a cardinalidade do conjunto das partes dos números naturais é
igual à cardinalidade dos reais, i.e., |P(N)| = |R|


quem puder ajudar, agradeço.

Abraços

-- 
Esta mensagem foi verificada pelo sistema de antiv�rus e
 acredita-se estar livre de perigo.