Try adding all the jars in your $HIVE/lib directory. If you want the
specific jar, you could look fr jackson or json serde in it.

Thanks
Best Regards

On Thu, Apr 2, 2015 at 12:49 AM, Todd Nist <tsind...@gmail.com> wrote:

> I have a feeling I’m missing a Jar that provides the support or could this
> may be related to https://issues.apache.org/jira/browse/SPARK-5792. If it
> is a Jar where would I find that ? I would have thought in the $HIVE/lib
> folder, but not sure which jar contains it.
>
> Error:
>
> Create Metric Temporary Table for querying15/04/01 14:41:44 INFO 
> HiveMetaStore: 0: Opening raw store with implemenation 
> class:org.apache.hadoop.hive.metastore.ObjectStore15/04/01 14:41:44 INFO 
> ObjectStore: ObjectStore, initialize called15/04/01 14:41:45 INFO 
> Persistence: Property hive.metastore.integral.jdo.pushdown unknown - will be 
> ignored15/04/01 14:41:45 INFO Persistence: Property datanucleus.cache.level2 
> unknown - will be ignored15/04/01 14:41:45 INFO BlockManager: Removing 
> broadcast 015/04/01 14:41:45 INFO BlockManager: Removing block 
> broadcast_015/04/01 14:41:45 INFO MemoryStore: Block broadcast_0 of size 1272 
> dropped from memory (free 278018571)15/04/01 14:41:45 INFO BlockManager: 
> Removing block broadcast_0_piece015/04/01 14:41:45 INFO MemoryStore: Block 
> broadcast_0_piece0 of size 869 dropped from memory (free 278019440)15/04/01 
> 14:41:45 INFO BlockManagerInfo: Removed broadcast_0_piece0 on 
> 192.168.1.5:63230 in memory (size: 869.0 B, free: 265.1 MB)15/04/01 14:41:45 
> INFO BlockManagerMaster: Updated info of block broadcast_0_piece015/04/01 
> 14:41:45 INFO BlockManagerInfo: Removed broadcast_0_piece0 on 
> 192.168.1.5:63278 in memory (size: 869.0 B, free: 530.0 MB)15/04/01 14:41:45 
> INFO ContextCleaner: Cleaned broadcast 015/04/01 14:41:46 INFO ObjectStore: 
> Setting MetaStore object pin classes with 
> hive.metastore.cache.pinobjtypes="Table,StorageDescriptor,SerDeInfo,Partition,Database,Type,FieldSchema,Order"15/04/01
>  14:41:46 INFO Datastore: The class 
> "org.apache.hadoop.hive.metastore.model.MFieldSchema" is tagged as 
> "embedded-only" so does not have its own datastore table.15/04/01 14:41:46 
> INFO Datastore: The class "org.apache.hadoop.hive.metastore.model.MOrder" is 
> tagged as "embedded-only" so does not have its own datastore table.15/04/01 
> 14:41:47 INFO Datastore: The class 
> "org.apache.hadoop.hive.metastore.model.MFieldSchema" is tagged as 
> "embedded-only" so does not have its own datastore table.15/04/01 14:41:47 
> INFO Datastore: The class "org.apache.hadoop.hive.metastore.model.MOrder" is 
> tagged as "embedded-only" so does not have its own datastore table.15/04/01 
> 14:41:47 INFO Query: Reading in results for query 
> "org.datanucleus.store.rdbms.query.SQLQuery@0" since the connection used is 
> closing15/04/01 14:41:47 INFO ObjectStore: Initialized ObjectStore15/04/01 
> 14:41:47 INFO HiveMetaStore: Added admin role in metastore15/04/01 14:41:47 
> INFO HiveMetaStore: Added public role in metastore15/04/01 14:41:48 INFO 
> HiveMetaStore: No user is added in admin role, since config is empty15/04/01 
> 14:41:48 INFO SessionState: No Tez session required at this point. 
> hive.execution.engine=mr.15/04/01 14:41:49 INFO ParseDriver: Parsing command: 
> SELECT path, name, value, v1.peValue, v1.peName
>              FROM metric
>              lateral view json_tuple(pathElements, 'name', 'value') v1
>                as peName, peValue15/04/01 14:41:49 INFO ParseDriver: Parse 
> CompletedException in thread "main" java.lang.ClassNotFoundException: 
> json_tuple
>     at java.net.URLClassLoader$1.run(URLClassLoader.java:372)
>     at java.net.URLClassLoader$1.run(URLClassLoader.java:361)
>     at java.security.AccessController.doPrivileged(Native Method)
>     at java.net.URLClassLoader.findClass(URLClassLoader.java:360)
>     at java.lang.ClassLoader.loadClass(ClassLoader.java:424)
>     at java.lang.ClassLoader.loadClass(ClassLoader.java:357)
>     at 
> org.apache.spark.sql.hive.HiveFunctionWrapper.createFunction(Shim13.scala:141)
>     at 
> org.apache.spark.sql.hive.HiveGenericUdtf.function$lzycompute(hiveUdfs.scala:261)
>     at org.apache.spark.sql.hive.HiveGenericUdtf.function(hiveUdfs.scala:261)
>     at 
> org.apache.spark.sql.hive.HiveGenericUdtf.outputInspector$lzycompute(hiveUdfs.scala:267)
>     at 
> org.apache.spark.sql.hive.HiveGenericUdtf.outputInspector(hiveUdfs.scala:267)
>     at 
> org.apache.spark.sql.hive.HiveGenericUdtf.outputDataTypes$lzycompute(hiveUdfs.scala:272)
>     at 
> org.apache.spark.sql.hive.HiveGenericUdtf.outputDataTypes(hiveUdfs.scala:272)
>     at 
> org.apache.spark.sql.hive.HiveGenericUdtf.makeOutput(hiveUdfs.scala:278)
>     at 
> org.apache.spark.sql.catalyst.expressions.Generator.output(generators.scala:60)
>     at 
> org.apache.spark.sql.catalyst.plans.logical.Generate$$anonfun$1.apply(basicOperators.scala:50)
>       at 
> org.apache.spark.sql.catalyst.plans.logical.Generate$$anonfun$1.apply(basicOperators.scala:50)
>     at scala.Option.map(Option.scala:145)
>     at 
> org.apache.spark.sql.catalyst.plans.logical.Generate.generatorOutput(basicOperators.scala:50)
>     at 
> org.apache.spark.sql.catalyst.plans.logical.Generate.output(basicOperators.scala:60)
>     at 
> org.apache.spark.sql.catalyst.plans.logical.LogicalPlan$$anonfun$resolveChildren$1.apply(LogicalPlan.scala:118)
>       at 
> org.apache.spark.sql.catalyst.plans.logical.LogicalPlan$$anonfun$resolveChildren$1.apply(LogicalPlan.scala:118)
>     at 
> scala.collection.TraversableLike$$anonfun$flatMap$1.apply(TraversableLike.scala:251)
>       at 
> scala.collection.TraversableLike$$anonfun$flatMap$1.apply(TraversableLike.scala:251)
>     at scala.collection.immutable.List.foreach(List.scala:318)
>     at 
> scala.collection.TraversableLike$class.flatMap(TraversableLike.scala:251)
>     at scala.collection.AbstractTraversable.flatMap(Traversable.scala:105)
>     at 
> org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.resolveChildren(LogicalPlan.scala:118)
>     at 
> org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveReferences$$anonfun$apply$6$$anonfun$applyOrElse$1.applyOrElse(Analyzer.scala:159)
>     at 
> org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveReferences$$anonfun$apply$6$$anonfun$applyOrElse$1.applyOrElse(Analyzer.scala:156)
>     at 
> org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:144)
>     at 
> org.apache.spark.sql.catalyst.plans.QueryPlan.org$apache$spark$sql$catalyst$plans$QueryPlan$$transformExpressionDown$1(QueryPlan.scala:71)
>       at 
> org.apache.spark.sql.catalyst.plans.QueryPlan$$anonfun$1$$anonfun$apply$1.apply(QueryPlan.scala:85)
>     at 
> scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244)
>       at 
> scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244)
>     at 
> scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
>     at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47)
>     at scala.collection.TraversableLike$class.map(TraversableLike.scala:244)
>     at scala.collection.AbstractTraversable.map(Traversable.scala:105)
>     at 
> org.apache.spark.sql.catalyst.plans.QueryPlan$$anonfun$1.apply(QueryPlan.scala:84)
>       at scala.collection.Iterator$$anon$11.next(Iterator.scala:328)
>     at scala.collection.Iterator$class.foreach(Iterator.scala:727)
>     at scala.collection.AbstractIterator.foreach(Iterator.scala:1157)
>     at 
> scala.collection.generic.Growable$class.$plus$plus$eq(Growable.scala:48)
>     at 
> scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:103)
>     at 
> scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:47)
>     at scala.collection.TraversableOnce$class.to(TraversableOnce.scala:273)
>     at scala.collection.AbstractIterator.to(Iterator.scala:1157)
>     at 
> scala.collection.TraversableOnce$class.toBuffer(TraversableOnce.scala:265)
>     at scala.collection.AbstractIterator.toBuffer(Iterator.scala:1157)
>     at 
> scala.collection.TraversableOnce$class.toArray(TraversableOnce.scala:252)
>     at scala.collection.AbstractIterator.toArray(Iterator.scala:1157)
>     at 
> org.apache.spark.sql.catalyst.plans.QueryPlan.transformExpressionsDown(QueryPlan.scala:89)
>     at 
> org.apache.spark.sql.catalyst.plans.QueryPlan.transformExpressions(QueryPlan.scala:60)
>     at 
> org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveReferences$$anonfun$apply$6.applyOrElse(Analyzer.scala:156)
>     at 
> org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveReferences$$anonfun$apply$6.applyOrElse(Analyzer.scala:153)
>     at 
> org.apache.spark.sql.catalyst.trees.TreeNode.transformUp(TreeNode.scala:206)
>     at 
> org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveReferences$.apply(Analyzer.scala:153)
>     at 
> org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveReferences$.apply(Analyzer.scala:152)
>     at 
> org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$apply$1$$anonfun$apply$2.apply(RuleExecutor.scala:61)
>     at 
> org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$apply$1$$anonfun$apply$2.apply(RuleExecutor.scala:59)
>     at 
> scala.collection.LinearSeqOptimized$class.foldLeft(LinearSeqOptimized.scala:111)
>     at scala.collection.immutable.List.foldLeft(List.scala:84)
>     at 
> org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$apply$1.apply(RuleExecutor.scala:59)
>       at 
> org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$apply$1.apply(RuleExecutor.scala:51)
>     at scala.collection.immutable.List.foreach(List.scala:318)
>     at 
> org.apache.spark.sql.catalyst.rules.RuleExecutor.apply(RuleExecutor.scala:51)
>     at 
> org.apache.spark.sql.SQLContext$QueryExecution.analyzed$lzycompute(SQLContext.scala:411)
>     at 
> org.apache.spark.sql.SQLContext$QueryExecution.analyzed(SQLContext.scala:411)
>     at 
> org.apache.spark.sql.SQLContext$QueryExecution.withCachedData$lzycompute(SQLContext.scala:412)
>     at 
> org.apache.spark.sql.SQLContext$QueryExecution.withCachedData(SQLContext.scala:412)
>     at 
> org.apache.spark.sql.SQLContext$QueryExecution.optimizedPlan$lzycompute(SQLContext.scala:413)
>     at 
> org.apache.spark.sql.SQLContext$QueryExecution.optimizedPlan(SQLContext.scala:413)
>     at 
> org.apache.spark.sql.SQLContext$QueryExecution.sparkPlan$lzycompute(SQLContext.scala:418)
>     at 
> org.apache.spark.sql.SQLContext$QueryExecution.sparkPlan(SQLContext.scala:416)
>     at 
> org.apache.spark.sql.SQLContext$QueryExecution.executedPlan$lzycompute(SQLContext.scala:422)
>     at 
> org.apache.spark.sql.SQLContext$QueryExecution.executedPlan(SQLContext.scala:422)
>     at org.apache.spark.sql.SchemaRDD.collect(SchemaRDD.scala:444)
>     at 
> com.opsdatastore.elasticsearch.spark.ElasticSearchReadWrite$.main(ElasticSearchReadWrite.scala:119)
>     at 
> com.opsdatastore.elasticsearch.spark.ElasticSearchReadWrite.main(ElasticSearchReadWrite.scala)
>     at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
>     at 
> sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
>     at 
> sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
>     at java.lang.reflect.Method.invoke(Method.java:483)
>     at org.apache.spark.deploy.SparkSubmit$.launch(SparkSubmit.scala:358)
>     at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:75)
>     at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)
>
> Json:
>
> "metric": {
>
>     "path": "/PA/Pittsburgh/12345 Westbrook Drive/main/theromostat-1",
>     "pathElements": [
>     {
>         "node": "State",
>         "value": "PA"
>     },
>     {
>         "node": "City",
>         "value": "Pittsburgh"
>     },
>     {
>         "node": "Street",
>         "value": "12345 Westbrook Drive"
>     },
>     {
>         "node": "level",
>         "value": "main"
>     },
>     {
>         "node": "device",
>         "value": "thermostat"
>     }
>     ],
>     "name": "Current Temperature",
>     "value": 29.590943279257175,
>     "timestamp": "2015-03-27T14:53:46+0000"
>   }
>
> Here is the code that produces the error:
>
> // Spark importsimport org.apache.spark.{SparkConf, SparkContext}import 
> org.apache.spark.SparkContext._
> import org.apache.spark.rdd.RDD
> import org.apache.spark.sql.{SchemaRDD,SQLContext}import 
> org.apache.spark.sql.hive._
> // ES importsimport org.elasticsearch.spark._import 
> org.elasticsearch.spark.sql._
> def main(args: Array[String]) {
>     val sc = sparkInit
>
>     @transient
>     val hiveContext = new org.apache.spark.sql.hive.HiveContext(sc)
>
>     import hiveContext._
>
>     val start = System.currentTimeMillis()
>
>     /*
>      * Read from ES and provide some insights with SparkSQL
>      */
>     val esData = sc.esRDD(s"${ElasticSearch.Index}/${ElasticSearch.Type}")
>
>     esData.collect.foreach(println(_))
>
>     val end = System.currentTimeMillis()
>     println(s"Total time: ${end-start} ms")
>
>     println("Create Metric Temporary Table for querying")
>
>     val schemaRDD = hiveContext.sql(
>           "CREATE TEMPORARY TABLE metric     " +
>           "USING org.elasticsearch.spark.sql " +
>           "OPTIONS (resource 'device/metric')" )
>
>     hiveContext.sql(
>         """SELECT path, name, value, v1.peValue, v1.peName
>              FROM metric
>              lateral view json_tuple(pathElements, 'name', 'value') v1
>                as peName, peValue
>         """)
>         .collect.foreach(println(_))
>   }
> }
>
> More than likely I’m missing a jar, but not sure what that would be.
>
> -Todd
>

Reply via email to