Can you try building Spark
<https://spark.apache.org/docs/1.2.0/building-spark.html#building-with-hive-and-jdbc-support#building-with-hive-and-jdbc-support>
with hive support? Before that try to run the following:

./bin/spark-shell --master spark://radtech.io:7077 --total-executor-cores 2
--driver-class-path /usr/local/spark/lib/mysql-connector-java-5.1.34-bin.jar
--jars /opt/hive/0.13.1/lib/hive-exec.jar

Thanks
Best Regards

On Fri, Apr 3, 2015 at 2:55 PM, Todd Nist <tsind...@gmail.com> wrote:

> Hi Akhil,
>
> This is for version 1.2.1.  Well the other thread that you reference was
> me attempting it in 1.3.0 to see if the issue was related to 1.2.1.  I did
> not build Spark but used the version from the Spark download site for 1.2.1
> Pre Built for Hadoop 2.4 or Later.
>
> Since I get the error in both 1.2.1 and 1.3.0,
>
> 15/04/01 14:41:49 INFO ParseDriver: Parse Completed Exception in thread
> "main" java.lang.ClassNotFoundException: json_tuple at
> java.net.URLClassLoader$1.run(
>
> It looks like I just don't have the jar.  Even including all jars in the
> $HIVE/lib directory did not seem to work.  Though when looking in $HIVE/lib
> for 0.13.1, I do not see any json serde or jackson files.  I do see that
> hive-exec.jar contains
> the org/apache/hadoop/hive/ql/udf/generic/GenericUDTFJSONTuple class.  Do
> you know if there is another Jar that is required or should it work just by
> including all jars from $HIVE/lib?
>
> I can build it locally, but did not think that was required based on the
> version I downloaded; is that not the case?
>
> Thanks for the assistance.
>
> -Todd
>
>
> On Fri, Apr 3, 2015 at 2:06 AM, Akhil Das <ak...@sigmoidanalytics.com>
> wrote:
>
>> How did you build spark? which version of spark are you having? Doesn't
>> this thread already explains it?
>> https://www.mail-archive.com/user@spark.apache.org/msg25505.html
>>
>> Thanks
>> Best Regards
>>
>> On Thu, Apr 2, 2015 at 11:10 PM, Todd Nist <tsind...@gmail.com> wrote:
>>
>>> Hi Akhil,
>>>
>>> Tried your suggestion to no avail.  I actually to not see and "jackson"
>>> or "json serde" jars in the $HIVE/lib directory.  This is hive 0.13.1 and
>>> spark 1.2.1
>>>
>>> Here is what I did:
>>>
>>> I have added the lib folder to the –jars option when starting the
>>> spark-shell,
>>> but the job fails. The hive-site.xml is in the $SPARK_HOME/conf
>>> directory.
>>>
>>> I start the spark-shell as follows:
>>>
>>> ./bin/spark-shell --master spark://radtech.io:7077 --total-executor-cores 2 
>>> --driver-class-path /usr/local/spark/lib/mysql-connector-java-5.1.34-bin.jar
>>>
>>> and like this
>>>
>>> ./bin/spark-shell --master spark://radtech.io:7077 --total-executor-cores 2 
>>> --driver-class-path 
>>> /usr/local/spark/lib/mysql-connector-java-5.1.34-bin.jar --jars 
>>> /opt/hive/0.13.1/lib/*
>>>
>>> I’m just doing this in the spark-shell now:
>>>
>>> import org.apache.spark.sql.hive._val sqlContext = new 
>>> HiveContext(sc)import sqlContext._case class MetricTable(path: String, 
>>> pathElements: String, name: String, value: String)val mt = new 
>>> MetricTable("""path": "/DC1/HOST1/""",
>>>     """pathElements": [{"node": "DataCenter","value": "DC1"},{"node": 
>>> "host","value": "HOST1"}]""",
>>>     """name": "Memory Usage (%)""",
>>>     """value": 29.590943279257175""")val rdd1 = sc.makeRDD(List(mt))
>>> rdd1.printSchema()
>>> rdd1.registerTempTable("metric_table")
>>> sql(
>>>     """SELECT path, name, value, v1.peValue, v1.peName
>>>          FROM metric_table
>>>            lateral view json_tuple(pathElements, 'name', 'value') v1
>>>              as peName, peValue
>>>     """)
>>>     .collect.foreach(println(_))
>>>
>>> It results in the same error:
>>>
>>> 15/04/02 12:33:59 INFO ParseDriver: Parsing command: SELECT path, name, 
>>> value, v1.peValue, v1.peName         FROM metric_table           lateral 
>>> view json_tuple(pathElements, 'name', 'value') v1             as peName, 
>>> peValue
>>> 15/04/02 12:34:00 INFO ParseDriver: Parse Completed
>>> res2: org.apache.spark.sql.SchemaRDD =
>>> SchemaRDD[5] at RDD at SchemaRDD.scala:108== Query Plan ==== Physical Plan 
>>> ==
>>> java.lang.ClassNotFoundException: json_tuple
>>>
>>> Any other suggestions or am I doing something else wrong here?
>>>
>>> -Todd
>>>
>>>
>>>
>>> On Thu, Apr 2, 2015 at 2:00 AM, Akhil Das <ak...@sigmoidanalytics.com>
>>> wrote:
>>>
>>>> Try adding all the jars in your $HIVE/lib directory. If you want the
>>>> specific jar, you could look fr jackson or json serde in it.
>>>>
>>>> Thanks
>>>> Best Regards
>>>>
>>>> On Thu, Apr 2, 2015 at 12:49 AM, Todd Nist <tsind...@gmail.com> wrote:
>>>>
>>>>> I have a feeling I’m missing a Jar that provides the support or could
>>>>> this may be related to
>>>>> https://issues.apache.org/jira/browse/SPARK-5792. If it is a Jar
>>>>> where would I find that ? I would have thought in the $HIVE/lib folder, 
>>>>> but
>>>>> not sure which jar contains it.
>>>>>
>>>>> Error:
>>>>>
>>>>> Create Metric Temporary Table for querying15/04/01 14:41:44 INFO 
>>>>> HiveMetaStore: 0: Opening raw store with implemenation 
>>>>> class:org.apache.hadoop.hive.metastore.ObjectStore15/04/01 14:41:44 INFO 
>>>>> ObjectStore: ObjectStore, initialize called15/04/01 14:41:45 INFO 
>>>>> Persistence: Property hive.metastore.integral.jdo.pushdown unknown - will 
>>>>> be ignored15/04/01 14:41:45 INFO Persistence: Property 
>>>>> datanucleus.cache.level2 unknown - will be ignored15/04/01 14:41:45 INFO 
>>>>> BlockManager: Removing broadcast 015/04/01 14:41:45 INFO BlockManager: 
>>>>> Removing block broadcast_015/04/01 14:41:45 INFO MemoryStore: Block 
>>>>> broadcast_0 of size 1272 dropped from memory (free 278018571)15/04/01 
>>>>> 14:41:45 INFO BlockManager: Removing block broadcast_0_piece015/04/01 
>>>>> 14:41:45 INFO MemoryStore: Block broadcast_0_piece0 of size 869 dropped 
>>>>> from memory (free 278019440)15/04/01 14:41:45 INFO BlockManagerInfo: 
>>>>> Removed broadcast_0_piece0 on 192.168.1.5:63230 in memory (size: 869.0 B, 
>>>>> free: 265.1 MB)15/04/01 14:41:45 INFO BlockManagerMaster: Updated info of 
>>>>> block broadcast_0_piece015/04/01 14:41:45 INFO BlockManagerInfo: Removed 
>>>>> broadcast_0_piece0 on 192.168.1.5:63278 in memory (size: 869.0 B, free: 
>>>>> 530.0 MB)15/04/01 14:41:45 INFO ContextCleaner: Cleaned broadcast 
>>>>> 015/04/01 14:41:46 INFO ObjectStore: Setting MetaStore object pin classes 
>>>>> with 
>>>>> hive.metastore.cache.pinobjtypes="Table,StorageDescriptor,SerDeInfo,Partition,Database,Type,FieldSchema,Order"15/04/01
>>>>>  14:41:46 INFO Datastore: The class 
>>>>> "org.apache.hadoop.hive.metastore.model.MFieldSchema" is tagged as 
>>>>> "embedded-only" so does not have its own datastore table.15/04/01 
>>>>> 14:41:46 INFO Datastore: The class 
>>>>> "org.apache.hadoop.hive.metastore.model.MOrder" is tagged as 
>>>>> "embedded-only" so does not have its own datastore table.15/04/01 
>>>>> 14:41:47 INFO Datastore: The class 
>>>>> "org.apache.hadoop.hive.metastore.model.MFieldSchema" is tagged as 
>>>>> "embedded-only" so does not have its own datastore table.15/04/01 
>>>>> 14:41:47 INFO Datastore: The class 
>>>>> "org.apache.hadoop.hive.metastore.model.MOrder" is tagged as 
>>>>> "embedded-only" so does not have its own datastore table.15/04/01 
>>>>> 14:41:47 INFO Query: Reading in results for query 
>>>>> "org.datanucleus.store.rdbms.query.SQLQuery@0" since the connection used 
>>>>> is closing15/04/01 14:41:47 INFO ObjectStore: Initialized 
>>>>> ObjectStore15/04/01 14:41:47 INFO HiveMetaStore: Added admin role in 
>>>>> metastore15/04/01 14:41:47 INFO HiveMetaStore: Added public role in 
>>>>> metastore15/04/01 14:41:48 INFO HiveMetaStore: No user is added in admin 
>>>>> role, since config is empty15/04/01 14:41:48 INFO SessionState: No Tez 
>>>>> session required at this point. hive.execution.engine=mr.15/04/01 
>>>>> 14:41:49 INFO ParseDriver: Parsing command: SELECT path, name, value, 
>>>>> v1.peValue, v1.peName
>>>>>              FROM metric
>>>>>              lateral view json_tuple(pathElements, 'name', 'value') v1
>>>>>                as peName, peValue15/04/01 14:41:49 INFO ParseDriver: 
>>>>> Parse CompletedException in thread "main" 
>>>>> java.lang.ClassNotFoundException: json_tuple
>>>>>     at java.net.URLClassLoader$1.run(URLClassLoader.java:372)
>>>>>     at java.net.URLClassLoader$1.run(URLClassLoader.java:361)
>>>>>     at java.security.AccessController.doPrivileged(Native Method)
>>>>>     at java.net.URLClassLoader.findClass(URLClassLoader.java:360)
>>>>>     at java.lang.ClassLoader.loadClass(ClassLoader.java:424)
>>>>>     at java.lang.ClassLoader.loadClass(ClassLoader.java:357)
>>>>>     at 
>>>>> org.apache.spark.sql.hive.HiveFunctionWrapper.createFunction(Shim13.scala:141)
>>>>>     at 
>>>>> org.apache.spark.sql.hive.HiveGenericUdtf.function$lzycompute(hiveUdfs.scala:261)
>>>>>     at 
>>>>> org.apache.spark.sql.hive.HiveGenericUdtf.function(hiveUdfs.scala:261)
>>>>>     at 
>>>>> org.apache.spark.sql.hive.HiveGenericUdtf.outputInspector$lzycompute(hiveUdfs.scala:267)
>>>>>     at 
>>>>> org.apache.spark.sql.hive.HiveGenericUdtf.outputInspector(hiveUdfs.scala:267)
>>>>>     at 
>>>>> org.apache.spark.sql.hive.HiveGenericUdtf.outputDataTypes$lzycompute(hiveUdfs.scala:272)
>>>>>     at 
>>>>> org.apache.spark.sql.hive.HiveGenericUdtf.outputDataTypes(hiveUdfs.scala:272)
>>>>>     at 
>>>>> org.apache.spark.sql.hive.HiveGenericUdtf.makeOutput(hiveUdfs.scala:278)
>>>>>     at 
>>>>> org.apache.spark.sql.catalyst.expressions.Generator.output(generators.scala:60)
>>>>>     at 
>>>>> org.apache.spark.sql.catalyst.plans.logical.Generate$$anonfun$1.apply(basicOperators.scala:50)
>>>>>   at 
>>>>> org.apache.spark.sql.catalyst.plans.logical.Generate$$anonfun$1.apply(basicOperators.scala:50)
>>>>>     at scala.Option.map(Option.scala:145)
>>>>>     at 
>>>>> org.apache.spark.sql.catalyst.plans.logical.Generate.generatorOutput(basicOperators.scala:50)
>>>>>     at 
>>>>> org.apache.spark.sql.catalyst.plans.logical.Generate.output(basicOperators.scala:60)
>>>>>     at 
>>>>> org.apache.spark.sql.catalyst.plans.logical.LogicalPlan$$anonfun$resolveChildren$1.apply(LogicalPlan.scala:118)
>>>>>   at 
>>>>> org.apache.spark.sql.catalyst.plans.logical.LogicalPlan$$anonfun$resolveChildren$1.apply(LogicalPlan.scala:118)
>>>>>     at 
>>>>> scala.collection.TraversableLike$$anonfun$flatMap$1.apply(TraversableLike.scala:251)
>>>>>   at 
>>>>> scala.collection.TraversableLike$$anonfun$flatMap$1.apply(TraversableLike.scala:251)
>>>>>     at scala.collection.immutable.List.foreach(List.scala:318)
>>>>>     at 
>>>>> scala.collection.TraversableLike$class.flatMap(TraversableLike.scala:251)
>>>>>     at scala.collection.AbstractTraversable.flatMap(Traversable.scala:105)
>>>>>     at 
>>>>> org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.resolveChildren(LogicalPlan.scala:118)
>>>>>     at 
>>>>> org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveReferences$$anonfun$apply$6$$anonfun$applyOrElse$1.applyOrElse(Analyzer.scala:159)
>>>>>     at 
>>>>> org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveReferences$$anonfun$apply$6$$anonfun$applyOrElse$1.applyOrElse(Analyzer.scala:156)
>>>>>     at 
>>>>> org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:144)
>>>>>     at 
>>>>> org.apache.spark.sql.catalyst.plans.QueryPlan.org$apache$spark$sql$catalyst$plans$QueryPlan$$transformExpressionDown$1(QueryPlan.scala:71)
>>>>>   at 
>>>>> org.apache.spark.sql.catalyst.plans.QueryPlan$$anonfun$1$$anonfun$apply$1.apply(QueryPlan.scala:85)
>>>>>     at 
>>>>> scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244)
>>>>>   at 
>>>>> scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244)
>>>>>     at 
>>>>> scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
>>>>>     at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47)
>>>>>     at 
>>>>> scala.collection.TraversableLike$class.map(TraversableLike.scala:244)
>>>>>     at scala.collection.AbstractTraversable.map(Traversable.scala:105)
>>>>>     at 
>>>>> org.apache.spark.sql.catalyst.plans.QueryPlan$$anonfun$1.apply(QueryPlan.scala:84)
>>>>>   at scala.collection.Iterator$$anon$11.next(Iterator.scala:328)
>>>>>     at scala.collection.Iterator$class.foreach(Iterator.scala:727)
>>>>>     at scala.collection.AbstractIterator.foreach(Iterator.scala:1157)
>>>>>     at 
>>>>> scala.collection.generic.Growable$class.$plus$plus$eq(Growable.scala:48)
>>>>>     at 
>>>>> scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:103)
>>>>>     at 
>>>>> scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:47)
>>>>>     at 
>>>>> scala.collection.TraversableOnce$class.to(TraversableOnce.scala:273)
>>>>>     at scala.collection.AbstractIterator.to(Iterator.scala:1157)
>>>>>     at 
>>>>> scala.collection.TraversableOnce$class.toBuffer(TraversableOnce.scala:265)
>>>>>     at scala.collection.AbstractIterator.toBuffer(Iterator.scala:1157)
>>>>>     at 
>>>>> scala.collection.TraversableOnce$class.toArray(TraversableOnce.scala:252)
>>>>>     at scala.collection.AbstractIterator.toArray(Iterator.scala:1157)
>>>>>     at 
>>>>> org.apache.spark.sql.catalyst.plans.QueryPlan.transformExpressionsDown(QueryPlan.scala:89)
>>>>>     at 
>>>>> org.apache.spark.sql.catalyst.plans.QueryPlan.transformExpressions(QueryPlan.scala:60)
>>>>>     at 
>>>>> org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveReferences$$anonfun$apply$6.applyOrElse(Analyzer.scala:156)
>>>>>     at 
>>>>> org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveReferences$$anonfun$apply$6.applyOrElse(Analyzer.scala:153)
>>>>>     at 
>>>>> org.apache.spark.sql.catalyst.trees.TreeNode.transformUp(TreeNode.scala:206)
>>>>>     at 
>>>>> org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveReferences$.apply(Analyzer.scala:153)
>>>>>     at 
>>>>> org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveReferences$.apply(Analyzer.scala:152)
>>>>>     at 
>>>>> org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$apply$1$$anonfun$apply$2.apply(RuleExecutor.scala:61)
>>>>>     at 
>>>>> org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$apply$1$$anonfun$apply$2.apply(RuleExecutor.scala:59)
>>>>>     at 
>>>>> scala.collection.LinearSeqOptimized$class.foldLeft(LinearSeqOptimized.scala:111)
>>>>>     at scala.collection.immutable.List.foldLeft(List.scala:84)
>>>>>     at 
>>>>> org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$apply$1.apply(RuleExecutor.scala:59)
>>>>>   at 
>>>>> org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$apply$1.apply(RuleExecutor.scala:51)
>>>>>     at scala.collection.immutable.List.foreach(List.scala:318)
>>>>>     at 
>>>>> org.apache.spark.sql.catalyst.rules.RuleExecutor.apply(RuleExecutor.scala:51)
>>>>>     at 
>>>>> org.apache.spark.sql.SQLContext$QueryExecution.analyzed$lzycompute(SQLContext.scala:411)
>>>>>     at 
>>>>> org.apache.spark.sql.SQLContext$QueryExecution.analyzed(SQLContext.scala:411)
>>>>>     at 
>>>>> org.apache.spark.sql.SQLContext$QueryExecution.withCachedData$lzycompute(SQLContext.scala:412)
>>>>>     at 
>>>>> org.apache.spark.sql.SQLContext$QueryExecution.withCachedData(SQLContext.scala:412)
>>>>>     at 
>>>>> org.apache.spark.sql.SQLContext$QueryExecution.optimizedPlan$lzycompute(SQLContext.scala:413)
>>>>>     at 
>>>>> org.apache.spark.sql.SQLContext$QueryExecution.optimizedPlan(SQLContext.scala:413)
>>>>>     at 
>>>>> org.apache.spark.sql.SQLContext$QueryExecution.sparkPlan$lzycompute(SQLContext.scala:418)
>>>>>     at 
>>>>> org.apache.spark.sql.SQLContext$QueryExecution.sparkPlan(SQLContext.scala:416)
>>>>>     at 
>>>>> org.apache.spark.sql.SQLContext$QueryExecution.executedPlan$lzycompute(SQLContext.scala:422)
>>>>>     at 
>>>>> org.apache.spark.sql.SQLContext$QueryExecution.executedPlan(SQLContext.scala:422)
>>>>>     at org.apache.spark.sql.SchemaRDD.collect(SchemaRDD.scala:444)
>>>>>     at 
>>>>> com.opsdatastore.elasticsearch.spark.ElasticSearchReadWrite$.main(ElasticSearchReadWrite.scala:119)
>>>>>     at 
>>>>> com.opsdatastore.elasticsearch.spark.ElasticSearchReadWrite.main(ElasticSearchReadWrite.scala)
>>>>>     at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
>>>>>     at 
>>>>> sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
>>>>>     at 
>>>>> sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
>>>>>     at java.lang.reflect.Method.invoke(Method.java:483)
>>>>>     at org.apache.spark.deploy.SparkSubmit$.launch(SparkSubmit.scala:358)
>>>>>     at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:75)
>>>>>     at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)
>>>>>
>>>>> Json:
>>>>>
>>>>> "metric": {
>>>>>
>>>>>     "path": "/PA/Pittsburgh/12345 Westbrook Drive/main/theromostat-1",
>>>>>     "pathElements": [
>>>>>     {
>>>>>         "node": "State",
>>>>>         "value": "PA"
>>>>>     },
>>>>>     {
>>>>>         "node": "City",
>>>>>         "value": "Pittsburgh"
>>>>>     },
>>>>>     {
>>>>>         "node": "Street",
>>>>>         "value": "12345 Westbrook Drive"
>>>>>     },
>>>>>     {
>>>>>         "node": "level",
>>>>>         "value": "main"
>>>>>     },
>>>>>     {
>>>>>         "node": "device",
>>>>>         "value": "thermostat"
>>>>>     }
>>>>>     ],
>>>>>     "name": "Current Temperature",
>>>>>     "value": 29.590943279257175,
>>>>>     "timestamp": "2015-03-27T14:53:46+0000"
>>>>>   }
>>>>>
>>>>> Here is the code that produces the error:
>>>>>
>>>>> // Spark importsimport org.apache.spark.{SparkConf, SparkContext}import 
>>>>> org.apache.spark.SparkContext._
>>>>> import org.apache.spark.rdd.RDD
>>>>> import org.apache.spark.sql.{SchemaRDD,SQLContext}import 
>>>>> org.apache.spark.sql.hive._
>>>>> // ES importsimport org.elasticsearch.spark._import 
>>>>> org.elasticsearch.spark.sql._
>>>>> def main(args: Array[String]) {
>>>>>     val sc = sparkInit
>>>>>
>>>>>     @transient
>>>>>     val hiveContext = new org.apache.spark.sql.hive.HiveContext(sc)
>>>>>
>>>>>     import hiveContext._
>>>>>
>>>>>     val start = System.currentTimeMillis()
>>>>>
>>>>>     /*
>>>>>      * Read from ES and provide some insights with SparkSQL
>>>>>      */
>>>>>     val esData = sc.esRDD(s"${ElasticSearch.Index}/${ElasticSearch.Type}")
>>>>>
>>>>>     esData.collect.foreach(println(_))
>>>>>
>>>>>     val end = System.currentTimeMillis()
>>>>>     println(s"Total time: ${end-start} ms")
>>>>>
>>>>>     println("Create Metric Temporary Table for querying")
>>>>>
>>>>>     val schemaRDD = hiveContext.sql(
>>>>>           "CREATE TEMPORARY TABLE metric     " +
>>>>>           "USING org.elasticsearch.spark.sql " +
>>>>>           "OPTIONS (resource 'device/metric')" )
>>>>>
>>>>>     hiveContext.sql(
>>>>>         """SELECT path, name, value, v1.peValue, v1.peName
>>>>>              FROM metric
>>>>>              lateral view json_tuple(pathElements, 'name', 'value') v1
>>>>>                as peName, peValue
>>>>>         """)
>>>>>         .collect.foreach(println(_))
>>>>>   }
>>>>> }
>>>>>
>>>>> More than likely I’m missing a jar, but not sure what that would be.
>>>>>
>>>>> -Todd
>>>>>
>>>>
>>>>
>>>
>>
>

Reply via email to