Started the spark shell with the one jar from hive suggested:

./bin/spark-shell --master spark://radtech.io:7077
--total-executor-cores 2 --driver-class-path
/usr/local/spark/lib/mysql-connector-java-5.1.34-bin.jar --jars
/opt/apache-hive-0.13.1-bin/lib/hive-exec-0.13.1.jar

Results in the same error:

scala> sql(     |     """SELECT path, name, value, v1.peValue,
v1.peName     |          FROM metric_table     |            lateral
view json_tuple(pathElements, 'name', 'value') v1     |
as peName, peValue     |     """)
15/04/03 06:01:30 INFO ParseDriver: Parsing command: SELECT path,
name, value, v1.peValue, v1.peName         FROM metric_table
lateral view json_tuple(pathElements, 'name', 'value') v1
as peName, peValue
15/04/03 06:01:31 INFO ParseDriver: Parse Completed
res2: org.apache.spark.sql.SchemaRDD =
SchemaRDD[5] at RDD at SchemaRDD.scala:108== Query Plan ==== Physical Plan ==
java.lang.ClassNotFoundException: json_tuple

I will try the rebuild.  Thanks again for the assistance.

-Todd


On Fri, Apr 3, 2015 at 5:34 AM, Akhil Das <ak...@sigmoidanalytics.com>
wrote:

> Can you try building Spark
> <https://spark.apache.org/docs/1.2.0/building-spark.html#building-with-hive-and-jdbc-support%23building-with-hive-and-jdbc-support>
> with hive support? Before that try to run the following:
>
> ./bin/spark-shell --master spark://radtech.io:7077 --total-executor-cores
> 2 --driver-class-path /usr/local/spark/lib/mysql-connector-java-5.1.34-bin
> .jar --jars /opt/hive/0.13.1/lib/hive-exec.jar
>
> Thanks
> Best Regards
>
> On Fri, Apr 3, 2015 at 2:55 PM, Todd Nist <tsind...@gmail.com> wrote:
>
>> Hi Akhil,
>>
>> This is for version 1.2.1.  Well the other thread that you reference was
>> me attempting it in 1.3.0 to see if the issue was related to 1.2.1.  I did
>> not build Spark but used the version from the Spark download site for 1.2.1
>> Pre Built for Hadoop 2.4 or Later.
>>
>> Since I get the error in both 1.2.1 and 1.3.0,
>>
>> 15/04/01 14:41:49 INFO ParseDriver: Parse Completed Exception in thread
>> "main" java.lang.ClassNotFoundException: json_tuple at
>> java.net.URLClassLoader$1.run(
>>
>> It looks like I just don't have the jar.  Even including all jars in the
>> $HIVE/lib directory did not seem to work.  Though when looking in $HIVE/lib
>> for 0.13.1, I do not see any json serde or jackson files.  I do see that
>> hive-exec.jar contains
>> the org/apache/hadoop/hive/ql/udf/generic/GenericUDTFJSONTuple class.  Do
>> you know if there is another Jar that is required or should it work just by
>> including all jars from $HIVE/lib?
>>
>> I can build it locally, but did not think that was required based on the
>> version I downloaded; is that not the case?
>>
>> Thanks for the assistance.
>>
>> -Todd
>>
>>
>> On Fri, Apr 3, 2015 at 2:06 AM, Akhil Das <ak...@sigmoidanalytics.com>
>> wrote:
>>
>>> How did you build spark? which version of spark are you having? Doesn't
>>> this thread already explains it?
>>> https://www.mail-archive.com/user@spark.apache.org/msg25505.html
>>>
>>> Thanks
>>> Best Regards
>>>
>>> On Thu, Apr 2, 2015 at 11:10 PM, Todd Nist <tsind...@gmail.com> wrote:
>>>
>>>> Hi Akhil,
>>>>
>>>> Tried your suggestion to no avail.  I actually to not see and "jackson"
>>>> or "json serde" jars in the $HIVE/lib directory.  This is hive 0.13.1 and
>>>> spark 1.2.1
>>>>
>>>> Here is what I did:
>>>>
>>>> I have added the lib folder to the –jars option when starting the
>>>> spark-shell,
>>>> but the job fails. The hive-site.xml is in the $SPARK_HOME/conf
>>>> directory.
>>>>
>>>> I start the spark-shell as follows:
>>>>
>>>> ./bin/spark-shell --master spark://radtech.io:7077 --total-executor-cores 
>>>> 2 --driver-class-path 
>>>> /usr/local/spark/lib/mysql-connector-java-5.1.34-bin.jar
>>>>
>>>> and like this
>>>>
>>>> ./bin/spark-shell --master spark://radtech.io:7077 --total-executor-cores 
>>>> 2 --driver-class-path 
>>>> /usr/local/spark/lib/mysql-connector-java-5.1.34-bin.jar --jars 
>>>> /opt/hive/0.13.1/lib/*
>>>>
>>>> I’m just doing this in the spark-shell now:
>>>>
>>>> import org.apache.spark.sql.hive._val sqlContext = new 
>>>> HiveContext(sc)import sqlContext._case class MetricTable(path: String, 
>>>> pathElements: String, name: String, value: String)val mt = new 
>>>> MetricTable("""path": "/DC1/HOST1/""",
>>>>     """pathElements": [{"node": "DataCenter","value": "DC1"},{"node": 
>>>> "host","value": "HOST1"}]""",
>>>>     """name": "Memory Usage (%)""",
>>>>     """value": 29.590943279257175""")val rdd1 = sc.makeRDD(List(mt))
>>>> rdd1.printSchema()
>>>> rdd1.registerTempTable("metric_table")
>>>> sql(
>>>>     """SELECT path, name, value, v1.peValue, v1.peName
>>>>          FROM metric_table
>>>>            lateral view json_tuple(pathElements, 'name', 'value') v1
>>>>              as peName, peValue
>>>>     """)
>>>>     .collect.foreach(println(_))
>>>>
>>>> It results in the same error:
>>>>
>>>> 15/04/02 12:33:59 INFO ParseDriver: Parsing command: SELECT path, name, 
>>>> value, v1.peValue, v1.peName         FROM metric_table           lateral 
>>>> view json_tuple(pathElements, 'name', 'value') v1             as peName, 
>>>> peValue
>>>> 15/04/02 12:34:00 INFO ParseDriver: Parse Completed
>>>> res2: org.apache.spark.sql.SchemaRDD =
>>>> SchemaRDD[5] at RDD at SchemaRDD.scala:108== Query Plan ==== Physical Plan 
>>>> ==
>>>> java.lang.ClassNotFoundException: json_tuple
>>>>
>>>> Any other suggestions or am I doing something else wrong here?
>>>>
>>>> -Todd
>>>>
>>>>
>>>>
>>>> On Thu, Apr 2, 2015 at 2:00 AM, Akhil Das <ak...@sigmoidanalytics.com>
>>>> wrote:
>>>>
>>>>> Try adding all the jars in your $HIVE/lib directory. If you want the
>>>>> specific jar, you could look fr jackson or json serde in it.
>>>>>
>>>>> Thanks
>>>>> Best Regards
>>>>>
>>>>> On Thu, Apr 2, 2015 at 12:49 AM, Todd Nist <tsind...@gmail.com> wrote:
>>>>>
>>>>>> I have a feeling I’m missing a Jar that provides the support or could
>>>>>> this may be related to
>>>>>> https://issues.apache.org/jira/browse/SPARK-5792. If it is a Jar
>>>>>> where would I find that ? I would have thought in the $HIVE/lib folder, 
>>>>>> but
>>>>>> not sure which jar contains it.
>>>>>>
>>>>>> Error:
>>>>>>
>>>>>> Create Metric Temporary Table for querying15/04/01 14:41:44 INFO 
>>>>>> HiveMetaStore: 0: Opening raw store with implemenation 
>>>>>> class:org.apache.hadoop.hive.metastore.ObjectStore15/04/01 14:41:44 INFO 
>>>>>> ObjectStore: ObjectStore, initialize called15/04/01 14:41:45 INFO 
>>>>>> Persistence: Property hive.metastore.integral.jdo.pushdown unknown - 
>>>>>> will be ignored15/04/01 14:41:45 INFO Persistence: Property 
>>>>>> datanucleus.cache.level2 unknown - will be ignored15/04/01 14:41:45 INFO 
>>>>>> BlockManager: Removing broadcast 015/04/01 14:41:45 INFO BlockManager: 
>>>>>> Removing block broadcast_015/04/01 14:41:45 INFO MemoryStore: Block 
>>>>>> broadcast_0 of size 1272 dropped from memory (free 278018571)15/04/01 
>>>>>> 14:41:45 INFO BlockManager: Removing block broadcast_0_piece015/04/01 
>>>>>> 14:41:45 INFO MemoryStore: Block broadcast_0_piece0 of size 869 dropped 
>>>>>> from memory (free 278019440)15/04/01 14:41:45 INFO BlockManagerInfo: 
>>>>>> Removed broadcast_0_piece0 on 192.168.1.5:63230 in memory (size: 869.0 
>>>>>> B, free: 265.1 MB)15/04/01 14:41:45 INFO BlockManagerMaster: Updated 
>>>>>> info of block broadcast_0_piece015/04/01 14:41:45 INFO BlockManagerInfo: 
>>>>>> Removed broadcast_0_piece0 on 192.168.1.5:63278 in memory (size: 869.0 
>>>>>> B, free: 530.0 MB)15/04/01 14:41:45 INFO ContextCleaner: Cleaned 
>>>>>> broadcast 015/04/01 14:41:46 INFO ObjectStore: Setting MetaStore object 
>>>>>> pin classes with 
>>>>>> hive.metastore.cache.pinobjtypes="Table,StorageDescriptor,SerDeInfo,Partition,Database,Type,FieldSchema,Order"15/04/01
>>>>>>  14:41:46 INFO Datastore: The class 
>>>>>> "org.apache.hadoop.hive.metastore.model.MFieldSchema" is tagged as 
>>>>>> "embedded-only" so does not have its own datastore table.15/04/01 
>>>>>> 14:41:46 INFO Datastore: The class 
>>>>>> "org.apache.hadoop.hive.metastore.model.MOrder" is tagged as 
>>>>>> "embedded-only" so does not have its own datastore table.15/04/01 
>>>>>> 14:41:47 INFO Datastore: The class 
>>>>>> "org.apache.hadoop.hive.metastore.model.MFieldSchema" is tagged as 
>>>>>> "embedded-only" so does not have its own datastore table.15/04/01 
>>>>>> 14:41:47 INFO Datastore: The class 
>>>>>> "org.apache.hadoop.hive.metastore.model.MOrder" is tagged as 
>>>>>> "embedded-only" so does not have its own datastore table.15/04/01 
>>>>>> 14:41:47 INFO Query: Reading in results for query 
>>>>>> "org.datanucleus.store.rdbms.query.SQLQuery@0" since the connection used 
>>>>>> is closing15/04/01 14:41:47 INFO ObjectStore: Initialized 
>>>>>> ObjectStore15/04/01 14:41:47 INFO HiveMetaStore: Added admin role in 
>>>>>> metastore15/04/01 14:41:47 INFO HiveMetaStore: Added public role in 
>>>>>> metastore15/04/01 14:41:48 INFO HiveMetaStore: No user is added in admin 
>>>>>> role, since config is empty15/04/01 14:41:48 INFO SessionState: No Tez 
>>>>>> session required at this point. hive.execution.engine=mr.15/04/01 
>>>>>> 14:41:49 INFO ParseDriver: Parsing command: SELECT path, name, value, 
>>>>>> v1.peValue, v1.peName
>>>>>>              FROM metric
>>>>>>              lateral view json_tuple(pathElements, 'name', 'value') v1
>>>>>>                as peName, peValue15/04/01 14:41:49 INFO ParseDriver: 
>>>>>> Parse CompletedException in thread "main" 
>>>>>> java.lang.ClassNotFoundException: json_tuple
>>>>>>     at java.net.URLClassLoader$1.run(URLClassLoader.java:372)
>>>>>>     at java.net.URLClassLoader$1.run(URLClassLoader.java:361)
>>>>>>     at java.security.AccessController.doPrivileged(Native Method)
>>>>>>     at java.net.URLClassLoader.findClass(URLClassLoader.java:360)
>>>>>>     at java.lang.ClassLoader.loadClass(ClassLoader.java:424)
>>>>>>     at java.lang.ClassLoader.loadClass(ClassLoader.java:357)
>>>>>>     at 
>>>>>> org.apache.spark.sql.hive.HiveFunctionWrapper.createFunction(Shim13.scala:141)
>>>>>>     at 
>>>>>> org.apache.spark.sql.hive.HiveGenericUdtf.function$lzycompute(hiveUdfs.scala:261)
>>>>>>     at 
>>>>>> org.apache.spark.sql.hive.HiveGenericUdtf.function(hiveUdfs.scala:261)
>>>>>>     at 
>>>>>> org.apache.spark.sql.hive.HiveGenericUdtf.outputInspector$lzycompute(hiveUdfs.scala:267)
>>>>>>     at 
>>>>>> org.apache.spark.sql.hive.HiveGenericUdtf.outputInspector(hiveUdfs.scala:267)
>>>>>>     at 
>>>>>> org.apache.spark.sql.hive.HiveGenericUdtf.outputDataTypes$lzycompute(hiveUdfs.scala:272)
>>>>>>     at 
>>>>>> org.apache.spark.sql.hive.HiveGenericUdtf.outputDataTypes(hiveUdfs.scala:272)
>>>>>>     at 
>>>>>> org.apache.spark.sql.hive.HiveGenericUdtf.makeOutput(hiveUdfs.scala:278)
>>>>>>     at 
>>>>>> org.apache.spark.sql.catalyst.expressions.Generator.output(generators.scala:60)
>>>>>>     at 
>>>>>> org.apache.spark.sql.catalyst.plans.logical.Generate$$anonfun$1.apply(basicOperators.scala:50)
>>>>>>  at 
>>>>>> org.apache.spark.sql.catalyst.plans.logical.Generate$$anonfun$1.apply(basicOperators.scala:50)
>>>>>>     at scala.Option.map(Option.scala:145)
>>>>>>     at 
>>>>>> org.apache.spark.sql.catalyst.plans.logical.Generate.generatorOutput(basicOperators.scala:50)
>>>>>>     at 
>>>>>> org.apache.spark.sql.catalyst.plans.logical.Generate.output(basicOperators.scala:60)
>>>>>>     at 
>>>>>> org.apache.spark.sql.catalyst.plans.logical.LogicalPlan$$anonfun$resolveChildren$1.apply(LogicalPlan.scala:118)
>>>>>>  at 
>>>>>> org.apache.spark.sql.catalyst.plans.logical.LogicalPlan$$anonfun$resolveChildren$1.apply(LogicalPlan.scala:118)
>>>>>>     at 
>>>>>> scala.collection.TraversableLike$$anonfun$flatMap$1.apply(TraversableLike.scala:251)
>>>>>>  at 
>>>>>> scala.collection.TraversableLike$$anonfun$flatMap$1.apply(TraversableLike.scala:251)
>>>>>>     at scala.collection.immutable.List.foreach(List.scala:318)
>>>>>>     at 
>>>>>> scala.collection.TraversableLike$class.flatMap(TraversableLike.scala:251)
>>>>>>     at 
>>>>>> scala.collection.AbstractTraversable.flatMap(Traversable.scala:105)
>>>>>>     at 
>>>>>> org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.resolveChildren(LogicalPlan.scala:118)
>>>>>>     at 
>>>>>> org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveReferences$$anonfun$apply$6$$anonfun$applyOrElse$1.applyOrElse(Analyzer.scala:159)
>>>>>>     at 
>>>>>> org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveReferences$$anonfun$apply$6$$anonfun$applyOrElse$1.applyOrElse(Analyzer.scala:156)
>>>>>>     at 
>>>>>> org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:144)
>>>>>>     at 
>>>>>> org.apache.spark.sql.catalyst.plans.QueryPlan.org$apache$spark$sql$catalyst$plans$QueryPlan$$transformExpressionDown$1(QueryPlan.scala:71)
>>>>>>  at 
>>>>>> org.apache.spark.sql.catalyst.plans.QueryPlan$$anonfun$1$$anonfun$apply$1.apply(QueryPlan.scala:85)
>>>>>>     at 
>>>>>> scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244)
>>>>>>  at 
>>>>>> scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244)
>>>>>>     at 
>>>>>> scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
>>>>>>     at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47)
>>>>>>     at 
>>>>>> scala.collection.TraversableLike$class.map(TraversableLike.scala:244)
>>>>>>     at scala.collection.AbstractTraversable.map(Traversable.scala:105)
>>>>>>     at 
>>>>>> org.apache.spark.sql.catalyst.plans.QueryPlan$$anonfun$1.apply(QueryPlan.scala:84)
>>>>>>  at scala.collection.Iterator$$anon$11.next(Iterator.scala:328)
>>>>>>     at scala.collection.Iterator$class.foreach(Iterator.scala:727)
>>>>>>     at scala.collection.AbstractIterator.foreach(Iterator.scala:1157)
>>>>>>     at 
>>>>>> scala.collection.generic.Growable$class.$plus$plus$eq(Growable.scala:48)
>>>>>>     at 
>>>>>> scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:103)
>>>>>>     at 
>>>>>> scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:47)
>>>>>>     at 
>>>>>> scala.collection.TraversableOnce$class.to(TraversableOnce.scala:273)
>>>>>>     at scala.collection.AbstractIterator.to(Iterator.scala:1157)
>>>>>>     at 
>>>>>> scala.collection.TraversableOnce$class.toBuffer(TraversableOnce.scala:265)
>>>>>>     at scala.collection.AbstractIterator.toBuffer(Iterator.scala:1157)
>>>>>>     at 
>>>>>> scala.collection.TraversableOnce$class.toArray(TraversableOnce.scala:252)
>>>>>>     at scala.collection.AbstractIterator.toArray(Iterator.scala:1157)
>>>>>>     at 
>>>>>> org.apache.spark.sql.catalyst.plans.QueryPlan.transformExpressionsDown(QueryPlan.scala:89)
>>>>>>     at 
>>>>>> org.apache.spark.sql.catalyst.plans.QueryPlan.transformExpressions(QueryPlan.scala:60)
>>>>>>     at 
>>>>>> org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveReferences$$anonfun$apply$6.applyOrElse(Analyzer.scala:156)
>>>>>>     at 
>>>>>> org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveReferences$$anonfun$apply$6.applyOrElse(Analyzer.scala:153)
>>>>>>     at 
>>>>>> org.apache.spark.sql.catalyst.trees.TreeNode.transformUp(TreeNode.scala:206)
>>>>>>     at 
>>>>>> org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveReferences$.apply(Analyzer.scala:153)
>>>>>>     at 
>>>>>> org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveReferences$.apply(Analyzer.scala:152)
>>>>>>     at 
>>>>>> org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$apply$1$$anonfun$apply$2.apply(RuleExecutor.scala:61)
>>>>>>     at 
>>>>>> org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$apply$1$$anonfun$apply$2.apply(RuleExecutor.scala:59)
>>>>>>     at 
>>>>>> scala.collection.LinearSeqOptimized$class.foldLeft(LinearSeqOptimized.scala:111)
>>>>>>     at scala.collection.immutable.List.foldLeft(List.scala:84)
>>>>>>     at 
>>>>>> org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$apply$1.apply(RuleExecutor.scala:59)
>>>>>>  at 
>>>>>> org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$apply$1.apply(RuleExecutor.scala:51)
>>>>>>     at scala.collection.immutable.List.foreach(List.scala:318)
>>>>>>     at 
>>>>>> org.apache.spark.sql.catalyst.rules.RuleExecutor.apply(RuleExecutor.scala:51)
>>>>>>     at 
>>>>>> org.apache.spark.sql.SQLContext$QueryExecution.analyzed$lzycompute(SQLContext.scala:411)
>>>>>>     at 
>>>>>> org.apache.spark.sql.SQLContext$QueryExecution.analyzed(SQLContext.scala:411)
>>>>>>     at 
>>>>>> org.apache.spark.sql.SQLContext$QueryExecution.withCachedData$lzycompute(SQLContext.scala:412)
>>>>>>     at 
>>>>>> org.apache.spark.sql.SQLContext$QueryExecution.withCachedData(SQLContext.scala:412)
>>>>>>     at 
>>>>>> org.apache.spark.sql.SQLContext$QueryExecution.optimizedPlan$lzycompute(SQLContext.scala:413)
>>>>>>     at 
>>>>>> org.apache.spark.sql.SQLContext$QueryExecution.optimizedPlan(SQLContext.scala:413)
>>>>>>     at 
>>>>>> org.apache.spark.sql.SQLContext$QueryExecution.sparkPlan$lzycompute(SQLContext.scala:418)
>>>>>>     at 
>>>>>> org.apache.spark.sql.SQLContext$QueryExecution.sparkPlan(SQLContext.scala:416)
>>>>>>     at 
>>>>>> org.apache.spark.sql.SQLContext$QueryExecution.executedPlan$lzycompute(SQLContext.scala:422)
>>>>>>     at 
>>>>>> org.apache.spark.sql.SQLContext$QueryExecution.executedPlan(SQLContext.scala:422)
>>>>>>     at org.apache.spark.sql.SchemaRDD.collect(SchemaRDD.scala:444)
>>>>>>     at 
>>>>>> com.opsdatastore.elasticsearch.spark.ElasticSearchReadWrite$.main(ElasticSearchReadWrite.scala:119)
>>>>>>     at 
>>>>>> com.opsdatastore.elasticsearch.spark.ElasticSearchReadWrite.main(ElasticSearchReadWrite.scala)
>>>>>>     at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
>>>>>>     at 
>>>>>> sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
>>>>>>     at 
>>>>>> sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
>>>>>>     at java.lang.reflect.Method.invoke(Method.java:483)
>>>>>>     at org.apache.spark.deploy.SparkSubmit$.launch(SparkSubmit.scala:358)
>>>>>>     at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:75)
>>>>>>     at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)
>>>>>>
>>>>>> Json:
>>>>>>
>>>>>> "metric": {
>>>>>>
>>>>>>     "path": "/PA/Pittsburgh/12345 Westbrook Drive/main/theromostat-1",
>>>>>>     "pathElements": [
>>>>>>     {
>>>>>>         "node": "State",
>>>>>>         "value": "PA"
>>>>>>     },
>>>>>>     {
>>>>>>         "node": "City",
>>>>>>         "value": "Pittsburgh"
>>>>>>     },
>>>>>>     {
>>>>>>         "node": "Street",
>>>>>>         "value": "12345 Westbrook Drive"
>>>>>>     },
>>>>>>     {
>>>>>>         "node": "level",
>>>>>>         "value": "main"
>>>>>>     },
>>>>>>     {
>>>>>>         "node": "device",
>>>>>>         "value": "thermostat"
>>>>>>     }
>>>>>>     ],
>>>>>>     "name": "Current Temperature",
>>>>>>     "value": 29.590943279257175,
>>>>>>     "timestamp": "2015-03-27T14:53:46+0000"
>>>>>>   }
>>>>>>
>>>>>> Here is the code that produces the error:
>>>>>>
>>>>>> // Spark importsimport org.apache.spark.{SparkConf, SparkContext}import 
>>>>>> org.apache.spark.SparkContext._
>>>>>> import org.apache.spark.rdd.RDD
>>>>>> import org.apache.spark.sql.{SchemaRDD,SQLContext}import 
>>>>>> org.apache.spark.sql.hive._
>>>>>> // ES importsimport org.elasticsearch.spark._import 
>>>>>> org.elasticsearch.spark.sql._
>>>>>> def main(args: Array[String]) {
>>>>>>     val sc = sparkInit
>>>>>>
>>>>>>     @transient
>>>>>>     val hiveContext = new org.apache.spark.sql.hive.HiveContext(sc)
>>>>>>
>>>>>>     import hiveContext._
>>>>>>
>>>>>>     val start = System.currentTimeMillis()
>>>>>>
>>>>>>     /*
>>>>>>      * Read from ES and provide some insights with SparkSQL
>>>>>>      */
>>>>>>     val esData = 
>>>>>> sc.esRDD(s"${ElasticSearch.Index}/${ElasticSearch.Type}")
>>>>>>
>>>>>>     esData.collect.foreach(println(_))
>>>>>>
>>>>>>     val end = System.currentTimeMillis()
>>>>>>     println(s"Total time: ${end-start} ms")
>>>>>>
>>>>>>     println("Create Metric Temporary Table for querying")
>>>>>>
>>>>>>     val schemaRDD = hiveContext.sql(
>>>>>>           "CREATE TEMPORARY TABLE metric     " +
>>>>>>           "USING org.elasticsearch.spark.sql " +
>>>>>>           "OPTIONS (resource 'device/metric')" )
>>>>>>
>>>>>>     hiveContext.sql(
>>>>>>         """SELECT path, name, value, v1.peValue, v1.peName
>>>>>>              FROM metric
>>>>>>              lateral view json_tuple(pathElements, 'name', 'value') v1
>>>>>>                as peName, peValue
>>>>>>         """)
>>>>>>         .collect.foreach(println(_))
>>>>>>   }
>>>>>> }
>>>>>>
>>>>>> More than likely I’m missing a jar, but not sure what that would be.
>>>>>>
>>>>>> -Todd
>>>>>>
>>>>>
>>>>>
>>>>
>>>
>>
>

Reply via email to