How did you build spark? which version of spark are you having? Doesn't
this thread already explains it?
https://www.mail-archive.com/user@spark.apache.org/msg25505.html

Thanks
Best Regards

On Thu, Apr 2, 2015 at 11:10 PM, Todd Nist <tsind...@gmail.com> wrote:

> Hi Akhil,
>
> Tried your suggestion to no avail.  I actually to not see and "jackson" or
> "json serde" jars in the $HIVE/lib directory.  This is hive 0.13.1 and
> spark 1.2.1
>
> Here is what I did:
>
> I have added the lib folder to the –jars option when starting the
> spark-shell,
> but the job fails. The hive-site.xml is in the $SPARK_HOME/conf directory.
>
> I start the spark-shell as follows:
>
> ./bin/spark-shell --master spark://radtech.io:7077 --total-executor-cores 2 
> --driver-class-path /usr/local/spark/lib/mysql-connector-java-5.1.34-bin.jar
>
> and like this
>
> ./bin/spark-shell --master spark://radtech.io:7077 --total-executor-cores 2 
> --driver-class-path /usr/local/spark/lib/mysql-connector-java-5.1.34-bin.jar 
> --jars /opt/hive/0.13.1/lib/*
>
> I’m just doing this in the spark-shell now:
>
> import org.apache.spark.sql.hive._val sqlContext = new HiveContext(sc)import 
> sqlContext._case class MetricTable(path: String, pathElements: String, name: 
> String, value: String)val mt = new MetricTable("""path": "/DC1/HOST1/""",
>     """pathElements": [{"node": "DataCenter","value": "DC1"},{"node": 
> "host","value": "HOST1"}]""",
>     """name": "Memory Usage (%)""",
>     """value": 29.590943279257175""")val rdd1 = sc.makeRDD(List(mt))
> rdd1.printSchema()
> rdd1.registerTempTable("metric_table")
> sql(
>     """SELECT path, name, value, v1.peValue, v1.peName
>          FROM metric_table
>            lateral view json_tuple(pathElements, 'name', 'value') v1
>              as peName, peValue
>     """)
>     .collect.foreach(println(_))
>
> It results in the same error:
>
> 15/04/02 12:33:59 INFO ParseDriver: Parsing command: SELECT path, name, 
> value, v1.peValue, v1.peName         FROM metric_table           lateral view 
> json_tuple(pathElements, 'name', 'value') v1             as peName, peValue
> 15/04/02 12:34:00 INFO ParseDriver: Parse Completed
> res2: org.apache.spark.sql.SchemaRDD =
> SchemaRDD[5] at RDD at SchemaRDD.scala:108== Query Plan ==== Physical Plan ==
> java.lang.ClassNotFoundException: json_tuple
>
> Any other suggestions or am I doing something else wrong here?
>
> -Todd
>
>
>
> On Thu, Apr 2, 2015 at 2:00 AM, Akhil Das <ak...@sigmoidanalytics.com>
> wrote:
>
>> Try adding all the jars in your $HIVE/lib directory. If you want the
>> specific jar, you could look fr jackson or json serde in it.
>>
>> Thanks
>> Best Regards
>>
>> On Thu, Apr 2, 2015 at 12:49 AM, Todd Nist <tsind...@gmail.com> wrote:
>>
>>> I have a feeling I’m missing a Jar that provides the support or could
>>> this may be related to https://issues.apache.org/jira/browse/SPARK-5792.
>>> If it is a Jar where would I find that ? I would have thought in the
>>> $HIVE/lib folder, but not sure which jar contains it.
>>>
>>> Error:
>>>
>>> Create Metric Temporary Table for querying15/04/01 14:41:44 INFO 
>>> HiveMetaStore: 0: Opening raw store with implemenation 
>>> class:org.apache.hadoop.hive.metastore.ObjectStore15/04/01 14:41:44 INFO 
>>> ObjectStore: ObjectStore, initialize called15/04/01 14:41:45 INFO 
>>> Persistence: Property hive.metastore.integral.jdo.pushdown unknown - will 
>>> be ignored15/04/01 14:41:45 INFO Persistence: Property 
>>> datanucleus.cache.level2 unknown - will be ignored15/04/01 14:41:45 INFO 
>>> BlockManager: Removing broadcast 015/04/01 14:41:45 INFO BlockManager: 
>>> Removing block broadcast_015/04/01 14:41:45 INFO MemoryStore: Block 
>>> broadcast_0 of size 1272 dropped from memory (free 278018571)15/04/01 
>>> 14:41:45 INFO BlockManager: Removing block broadcast_0_piece015/04/01 
>>> 14:41:45 INFO MemoryStore: Block broadcast_0_piece0 of size 869 dropped 
>>> from memory (free 278019440)15/04/01 14:41:45 INFO BlockManagerInfo: 
>>> Removed broadcast_0_piece0 on 192.168.1.5:63230 in memory (size: 869.0 B, 
>>> free: 265.1 MB)15/04/01 14:41:45 INFO BlockManagerMaster: Updated info of 
>>> block broadcast_0_piece015/04/01 14:41:45 INFO BlockManagerInfo: Removed 
>>> broadcast_0_piece0 on 192.168.1.5:63278 in memory (size: 869.0 B, free: 
>>> 530.0 MB)15/04/01 14:41:45 INFO ContextCleaner: Cleaned broadcast 015/04/01 
>>> 14:41:46 INFO ObjectStore: Setting MetaStore object pin classes with 
>>> hive.metastore.cache.pinobjtypes="Table,StorageDescriptor,SerDeInfo,Partition,Database,Type,FieldSchema,Order"15/04/01
>>>  14:41:46 INFO Datastore: The class 
>>> "org.apache.hadoop.hive.metastore.model.MFieldSchema" is tagged as 
>>> "embedded-only" so does not have its own datastore table.15/04/01 14:41:46 
>>> INFO Datastore: The class "org.apache.hadoop.hive.metastore.model.MOrder" 
>>> is tagged as "embedded-only" so does not have its own datastore 
>>> table.15/04/01 14:41:47 INFO Datastore: The class 
>>> "org.apache.hadoop.hive.metastore.model.MFieldSchema" is tagged as 
>>> "embedded-only" so does not have its own datastore table.15/04/01 14:41:47 
>>> INFO Datastore: The class "org.apache.hadoop.hive.metastore.model.MOrder" 
>>> is tagged as "embedded-only" so does not have its own datastore 
>>> table.15/04/01 14:41:47 INFO Query: Reading in results for query 
>>> "org.datanucleus.store.rdbms.query.SQLQuery@0" since the connection used is 
>>> closing15/04/01 14:41:47 INFO ObjectStore: Initialized ObjectStore15/04/01 
>>> 14:41:47 INFO HiveMetaStore: Added admin role in metastore15/04/01 14:41:47 
>>> INFO HiveMetaStore: Added public role in metastore15/04/01 14:41:48 INFO 
>>> HiveMetaStore: No user is added in admin role, since config is 
>>> empty15/04/01 14:41:48 INFO SessionState: No Tez session required at this 
>>> point. hive.execution.engine=mr.15/04/01 14:41:49 INFO ParseDriver: Parsing 
>>> command: SELECT path, name, value, v1.peValue, v1.peName
>>>              FROM metric
>>>              lateral view json_tuple(pathElements, 'name', 'value') v1
>>>                as peName, peValue15/04/01 14:41:49 INFO ParseDriver: Parse 
>>> CompletedException in thread "main" java.lang.ClassNotFoundException: 
>>> json_tuple
>>>     at java.net.URLClassLoader$1.run(URLClassLoader.java:372)
>>>     at java.net.URLClassLoader$1.run(URLClassLoader.java:361)
>>>     at java.security.AccessController.doPrivileged(Native Method)
>>>     at java.net.URLClassLoader.findClass(URLClassLoader.java:360)
>>>     at java.lang.ClassLoader.loadClass(ClassLoader.java:424)
>>>     at java.lang.ClassLoader.loadClass(ClassLoader.java:357)
>>>     at 
>>> org.apache.spark.sql.hive.HiveFunctionWrapper.createFunction(Shim13.scala:141)
>>>     at 
>>> org.apache.spark.sql.hive.HiveGenericUdtf.function$lzycompute(hiveUdfs.scala:261)
>>>     at 
>>> org.apache.spark.sql.hive.HiveGenericUdtf.function(hiveUdfs.scala:261)
>>>     at 
>>> org.apache.spark.sql.hive.HiveGenericUdtf.outputInspector$lzycompute(hiveUdfs.scala:267)
>>>     at 
>>> org.apache.spark.sql.hive.HiveGenericUdtf.outputInspector(hiveUdfs.scala:267)
>>>     at 
>>> org.apache.spark.sql.hive.HiveGenericUdtf.outputDataTypes$lzycompute(hiveUdfs.scala:272)
>>>     at 
>>> org.apache.spark.sql.hive.HiveGenericUdtf.outputDataTypes(hiveUdfs.scala:272)
>>>     at 
>>> org.apache.spark.sql.hive.HiveGenericUdtf.makeOutput(hiveUdfs.scala:278)
>>>     at 
>>> org.apache.spark.sql.catalyst.expressions.Generator.output(generators.scala:60)
>>>     at 
>>> org.apache.spark.sql.catalyst.plans.logical.Generate$$anonfun$1.apply(basicOperators.scala:50)
>>>     at 
>>> org.apache.spark.sql.catalyst.plans.logical.Generate$$anonfun$1.apply(basicOperators.scala:50)
>>>     at scala.Option.map(Option.scala:145)
>>>     at 
>>> org.apache.spark.sql.catalyst.plans.logical.Generate.generatorOutput(basicOperators.scala:50)
>>>     at 
>>> org.apache.spark.sql.catalyst.plans.logical.Generate.output(basicOperators.scala:60)
>>>     at 
>>> org.apache.spark.sql.catalyst.plans.logical.LogicalPlan$$anonfun$resolveChildren$1.apply(LogicalPlan.scala:118)
>>>     at 
>>> org.apache.spark.sql.catalyst.plans.logical.LogicalPlan$$anonfun$resolveChildren$1.apply(LogicalPlan.scala:118)
>>>     at 
>>> scala.collection.TraversableLike$$anonfun$flatMap$1.apply(TraversableLike.scala:251)
>>>     at 
>>> scala.collection.TraversableLike$$anonfun$flatMap$1.apply(TraversableLike.scala:251)
>>>     at scala.collection.immutable.List.foreach(List.scala:318)
>>>     at 
>>> scala.collection.TraversableLike$class.flatMap(TraversableLike.scala:251)
>>>     at scala.collection.AbstractTraversable.flatMap(Traversable.scala:105)
>>>     at 
>>> org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.resolveChildren(LogicalPlan.scala:118)
>>>     at 
>>> org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveReferences$$anonfun$apply$6$$anonfun$applyOrElse$1.applyOrElse(Analyzer.scala:159)
>>>     at 
>>> org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveReferences$$anonfun$apply$6$$anonfun$applyOrElse$1.applyOrElse(Analyzer.scala:156)
>>>     at 
>>> org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:144)
>>>     at 
>>> org.apache.spark.sql.catalyst.plans.QueryPlan.org$apache$spark$sql$catalyst$plans$QueryPlan$$transformExpressionDown$1(QueryPlan.scala:71)
>>>     at 
>>> org.apache.spark.sql.catalyst.plans.QueryPlan$$anonfun$1$$anonfun$apply$1.apply(QueryPlan.scala:85)
>>>     at 
>>> scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244)
>>>     at 
>>> scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244)
>>>     at 
>>> scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
>>>     at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47)
>>>     at scala.collection.TraversableLike$class.map(TraversableLike.scala:244)
>>>     at scala.collection.AbstractTraversable.map(Traversable.scala:105)
>>>     at 
>>> org.apache.spark.sql.catalyst.plans.QueryPlan$$anonfun$1.apply(QueryPlan.scala:84)
>>>     at scala.collection.Iterator$$anon$11.next(Iterator.scala:328)
>>>     at scala.collection.Iterator$class.foreach(Iterator.scala:727)
>>>     at scala.collection.AbstractIterator.foreach(Iterator.scala:1157)
>>>     at 
>>> scala.collection.generic.Growable$class.$plus$plus$eq(Growable.scala:48)
>>>     at 
>>> scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:103)
>>>     at 
>>> scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:47)
>>>     at scala.collection.TraversableOnce$class.to(TraversableOnce.scala:273)
>>>     at scala.collection.AbstractIterator.to(Iterator.scala:1157)
>>>     at 
>>> scala.collection.TraversableOnce$class.toBuffer(TraversableOnce.scala:265)
>>>     at scala.collection.AbstractIterator.toBuffer(Iterator.scala:1157)
>>>     at 
>>> scala.collection.TraversableOnce$class.toArray(TraversableOnce.scala:252)
>>>     at scala.collection.AbstractIterator.toArray(Iterator.scala:1157)
>>>     at 
>>> org.apache.spark.sql.catalyst.plans.QueryPlan.transformExpressionsDown(QueryPlan.scala:89)
>>>     at 
>>> org.apache.spark.sql.catalyst.plans.QueryPlan.transformExpressions(QueryPlan.scala:60)
>>>     at 
>>> org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveReferences$$anonfun$apply$6.applyOrElse(Analyzer.scala:156)
>>>     at 
>>> org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveReferences$$anonfun$apply$6.applyOrElse(Analyzer.scala:153)
>>>     at 
>>> org.apache.spark.sql.catalyst.trees.TreeNode.transformUp(TreeNode.scala:206)
>>>     at 
>>> org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveReferences$.apply(Analyzer.scala:153)
>>>     at 
>>> org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveReferences$.apply(Analyzer.scala:152)
>>>     at 
>>> org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$apply$1$$anonfun$apply$2.apply(RuleExecutor.scala:61)
>>>     at 
>>> org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$apply$1$$anonfun$apply$2.apply(RuleExecutor.scala:59)
>>>     at 
>>> scala.collection.LinearSeqOptimized$class.foldLeft(LinearSeqOptimized.scala:111)
>>>     at scala.collection.immutable.List.foldLeft(List.scala:84)
>>>     at 
>>> org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$apply$1.apply(RuleExecutor.scala:59)
>>>     at 
>>> org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$apply$1.apply(RuleExecutor.scala:51)
>>>     at scala.collection.immutable.List.foreach(List.scala:318)
>>>     at 
>>> org.apache.spark.sql.catalyst.rules.RuleExecutor.apply(RuleExecutor.scala:51)
>>>     at 
>>> org.apache.spark.sql.SQLContext$QueryExecution.analyzed$lzycompute(SQLContext.scala:411)
>>>     at 
>>> org.apache.spark.sql.SQLContext$QueryExecution.analyzed(SQLContext.scala:411)
>>>     at 
>>> org.apache.spark.sql.SQLContext$QueryExecution.withCachedData$lzycompute(SQLContext.scala:412)
>>>     at 
>>> org.apache.spark.sql.SQLContext$QueryExecution.withCachedData(SQLContext.scala:412)
>>>     at 
>>> org.apache.spark.sql.SQLContext$QueryExecution.optimizedPlan$lzycompute(SQLContext.scala:413)
>>>     at 
>>> org.apache.spark.sql.SQLContext$QueryExecution.optimizedPlan(SQLContext.scala:413)
>>>     at 
>>> org.apache.spark.sql.SQLContext$QueryExecution.sparkPlan$lzycompute(SQLContext.scala:418)
>>>     at 
>>> org.apache.spark.sql.SQLContext$QueryExecution.sparkPlan(SQLContext.scala:416)
>>>     at 
>>> org.apache.spark.sql.SQLContext$QueryExecution.executedPlan$lzycompute(SQLContext.scala:422)
>>>     at 
>>> org.apache.spark.sql.SQLContext$QueryExecution.executedPlan(SQLContext.scala:422)
>>>     at org.apache.spark.sql.SchemaRDD.collect(SchemaRDD.scala:444)
>>>     at 
>>> com.opsdatastore.elasticsearch.spark.ElasticSearchReadWrite$.main(ElasticSearchReadWrite.scala:119)
>>>     at 
>>> com.opsdatastore.elasticsearch.spark.ElasticSearchReadWrite.main(ElasticSearchReadWrite.scala)
>>>     at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
>>>     at 
>>> sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
>>>     at 
>>> sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
>>>     at java.lang.reflect.Method.invoke(Method.java:483)
>>>     at org.apache.spark.deploy.SparkSubmit$.launch(SparkSubmit.scala:358)
>>>     at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:75)
>>>     at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)
>>>
>>> Json:
>>>
>>> "metric": {
>>>
>>>     "path": "/PA/Pittsburgh/12345 Westbrook Drive/main/theromostat-1",
>>>     "pathElements": [
>>>     {
>>>         "node": "State",
>>>         "value": "PA"
>>>     },
>>>     {
>>>         "node": "City",
>>>         "value": "Pittsburgh"
>>>     },
>>>     {
>>>         "node": "Street",
>>>         "value": "12345 Westbrook Drive"
>>>     },
>>>     {
>>>         "node": "level",
>>>         "value": "main"
>>>     },
>>>     {
>>>         "node": "device",
>>>         "value": "thermostat"
>>>     }
>>>     ],
>>>     "name": "Current Temperature",
>>>     "value": 29.590943279257175,
>>>     "timestamp": "2015-03-27T14:53:46+0000"
>>>   }
>>>
>>> Here is the code that produces the error:
>>>
>>> // Spark importsimport org.apache.spark.{SparkConf, SparkContext}import 
>>> org.apache.spark.SparkContext._
>>> import org.apache.spark.rdd.RDD
>>> import org.apache.spark.sql.{SchemaRDD,SQLContext}import 
>>> org.apache.spark.sql.hive._
>>> // ES importsimport org.elasticsearch.spark._import 
>>> org.elasticsearch.spark.sql._
>>> def main(args: Array[String]) {
>>>     val sc = sparkInit
>>>
>>>     @transient
>>>     val hiveContext = new org.apache.spark.sql.hive.HiveContext(sc)
>>>
>>>     import hiveContext._
>>>
>>>     val start = System.currentTimeMillis()
>>>
>>>     /*
>>>      * Read from ES and provide some insights with SparkSQL
>>>      */
>>>     val esData = sc.esRDD(s"${ElasticSearch.Index}/${ElasticSearch.Type}")
>>>
>>>     esData.collect.foreach(println(_))
>>>
>>>     val end = System.currentTimeMillis()
>>>     println(s"Total time: ${end-start} ms")
>>>
>>>     println("Create Metric Temporary Table for querying")
>>>
>>>     val schemaRDD = hiveContext.sql(
>>>           "CREATE TEMPORARY TABLE metric     " +
>>>           "USING org.elasticsearch.spark.sql " +
>>>           "OPTIONS (resource 'device/metric')" )
>>>
>>>     hiveContext.sql(
>>>         """SELECT path, name, value, v1.peValue, v1.peName
>>>              FROM metric
>>>              lateral view json_tuple(pathElements, 'name', 'value') v1
>>>                as peName, peValue
>>>         """)
>>>         .collect.foreach(println(_))
>>>   }
>>> }
>>>
>>> More than likely I’m missing a jar, but not sure what that would be.
>>>
>>> -Todd
>>>
>>
>>
>

Reply via email to