This area of coulomb screening begs the question about how and why
screening happens. I say that the magnetic field affects the vacuum, what
happens to the vacuum depends on how strong the magnetic field is.



At its maximum intensity, an intense magnetic field will break the vacuum
down and subatomic particles will be formed out of the vacuum breakdown.



As you know, pions (*P **mesons )*keep the nucleus together by converting
protons and neutrons in a cycle through a color change process. If a
magnetic field produces pions out of the vacuum, the color processes
mediated by the strong force in the nucleus will be disrupted.



Here is a reference that explains how mesons formation out of the vacuum
happens.

*The **P **and **A **mesons in strong abelian magnetic field in SU(2)
lattice gauge theory.*





http://arxiv.org/pdf/1203.5699.pdf















On Tue, Mar 25, 2014 at 3:59 PM, David Roberson <dlrober...@aol.com> wrote:

> Bob
>
> Now I understand what you mean by a coherent system in this case.  I tend
> to think of coherent systems in a different manner but can accept your
> definition.
>
> We seem to be in agreement that a large guiding magnetic field enables the
> long range coupling between NAE.  I am still seeking how the actual
> mechanism operates at the initial state and how it grows from that level
> into the very large field that we suspect.  Could it be the changing nature
> of the field that leads to LENR activity?  At least in that situation an
> electric field is generated that can add energy to charged particles.  This
> is pure speculation seeking evidence.
>
> Dave
>  -----Original Message-----
> From: Bob Cook <frobertc...@hotmail.com>
> To: vortex-l <vortex-l@eskimo.com>
> Sent: Tue, Mar 25, 2014 2:55 pm
> Subject: Re: [Vo]:Electromagnetic Barrier
>
>  Dave-
>
> The note from Frank: "The net effect is a growing field and energy release
> that work together."   The growing field involves a larger volume and
> coupling for release of small packets of energy.  Is this not a coherent
> system?  The coherency occurs as a characteristic of a bigger and bigger
> system (more particles) as required to convert the mass change at the NAE
> to thermal energy.
>
> I have indicated that spin coupling among electrons and nuclei may be
> involved in the distribution of small packets of energy without damage to
> the NAE structure.
>
> Bob
>
> ----- Original Message -----
>  *From:* David Roberson <dlrober...@aol.com>
> *To:* vortex-l@eskimo.com
> *Sent:* Tuesday, March 25, 2014 11:22 AM
> *Subject:* Re: [Vo]:Electromagnetic Barrier
>
>  Bob,
>
> I do not understand your question.  I still believe that a large magnetic
> field is interacting with the individual small NAE in a manner that results
> in positive feedback among them.  The actual manner in which this
> interaction occurs is evading me.  As Frank indicated, a steady magnetic
> field should not be able to directly reduce the Coulomb barrier and hence I
> am exploring the concept of a time changing one.  He appears to have a
> concept that allows for the generation of an extremely large magnetic field
> and if that field changes with time, then the generated electric component
> might be the one I seek.
>
> Do you have a concept that effectively results in the reduction of the
> Coulomb barrier that we normally discuss?  It seems that energy can be
> borrowed from the time changing magnetic field of sufficient magnitude to
> reduce the net barrier leading to LENR activity.  Once the reaction begins,
> that borrowed energy is replaced with interest.  And, I suspect that most
> of the released energy from the reaction enhances the original field.  The
> net effect is a growing field and energy release that work together.
>
> One interesting feature of this mechanism would be the existence of a
> threshold effect.  Until sufficient coupling among the NEA is established
> very little energy would be released.  That could explain why it is so very
> difficult to replicate systems.   It may not be too difficult to get
> individual sites to react, but unless enough become involved, the total
> energy is too small to accurately measure.
>
> Dave
>  -----Original Message-----
> From: Bob Cook <frobertc...@hotmail.com>
> To: vortex-l <vortex-l@eskimo.com>
> Sent: Tue, Mar 25, 2014 1:58 pm
> Subject: Re: [Vo]:Electromagnetic Barrier
>
>  Dave--
>
> Is your concept of coherence changing?  Frank is providing a
> cause for expanded scope (size) of coherence in my mind.
>
> Thanks Frank.
>
> Bob
>
> ----- Original Message -----
> *From:* David Roberson <dlrober...@aol.com>
> *To:* vortex-l@eskimo.com
> *Sent:* Tuesday, March 25, 2014 10:28 AM
> *Subject:* Re: [Vo]:Electromagnetic Barrier
>
>  I understand that a steady magnetic field can not add energy to a
> charged particle.  It can redirect the velocity vector of that particle but
> can not directly add energy to it somewhat like the behavior of an electron
> beam that is bent by a magnetic field so that it moves against a fixed
> electric field.  The initial energy of the electron allows it to move
> uphill against the electric force.
>
> But, if the magnetic field located at the particle is changing in
> magnitude or direction it generates an electric field that can impart
> energy.   The enormous fields that you mention must begin as small fields
> that change in time to become large ones and perhaps that is when the
> additional energy is imparted.  I like the thought of a long range effect
> since that offers an opportunity for coupling among a multitude of
> individual particles.  This coupling could allow for the positive feedback
> mechanism that reinforces both the field and the LENR activity.  Both can
> then grow until some limiting factor arises.
>
> IIRC DGT does suggest that the external magnetic field changes with time
> as their reaction varies.  The question that arises is whether or not that
> rate of change would be able to generate a sufficient electric component.
> I find it interesting that nickel has a strong magnetic interaction that
> may well contribute to the rapid field changes.  And, of course, the
> threshold in LENR occurring around the curie temperature of nickel must has
> some significance.
>
> Dave
>  -----Original Message-----
> From: fznidarsic <fznidar...@aol.com>
> To: vortex-l <vortex-l@eskimo.com>
> Sent: Tue, Mar 25, 2014 12:37 pm
> Subject: Re: [Vo]:Electromagnetic Barrier
>
> Thats a common mistake.  We cannot reduce the Coulomb barrier.  The static
> force fields are conserved and cannot be reduced in a two body problem.
>  The static force field can, however, be bypassed by a force with longer
> range.
> The magnetic component of the strong nuclear force is called the spin
> orbit force. It is never considered by the hot fusion people.  In the solid
> cold fusion environment the magnetic component can be increased by a factor
> to 10 to the 39 power.  Again I am not speaking of the electromagnetic
> field, I am speaking of the magnetic component of the strong nuclear force.
>  In short "The constants of the motion tend toward the electromagnetic in a
> Bose condensate that is vibrated at a dimensional frequency of  1.094
> megahertz-meters."
>
>  Frank  Z
>
> The Coulomb repulsion can be reduced by magnetic attraction according to
> my thoughts and that would also explain magnetic interactions and low
> temperature operation of LENR devices.  Should we drop the reference to
> Coulomb barrier and replace it with reference to an Electromagnetic Barrier?
>
> Dave
>
>
>
>
> -----Original Message-----
> From: David Roberson <dlrober...@aol.com>
> To: vortex-l <vortex-l@eskimo.com>
> Sent: Tue, Mar 25, 2014 11:39 am
> Subject: [Vo]:Electromagnetic Barrier
>
>  We hear so much chatter about the Coulomb barrier and how difficult it
> is to overcome for fusion events to occur.  Perhaps we should consider it
> as an electromagnetic barrier instead.  There is plenty of reason to
> suspect that a magnetic component of force is active along with the
> electric component.
>
> Some in this list believe that spin coupling has a large impact upon the
> rate of LENR activity and there may well be other magnetic interactions
> associated with nano particles and their large local magnetic fields.  I
> tend to think that these couplings are a key concept that needs to be
> understood in detail if an ultimate theory is to be developed.
>
> The Coulomb repulsion can be reduced by magnetic attraction according to
> my thoughts and that would also explain magnetic interactions and low
> temperature operation of LENR devices.  Should we drop the reference to
> Coulomb barrier and replace it with reference to an Electromagnetic Barrier?
>
> Dave
>
>

Reply via email to