Here is some speculation about the cat and the mouse.

The inner reaction chamber may well be what Rossi calls the cat. The volume
which houses the heating elements may well be what Rossi calls the mouse.

The Cat has a high COP due to the fact that it contains nickel Micro/nano
powder. But the mouse has a COP just over 1. The mouse must also use
hydrogen to produce a small level of reaction which is base solely on
hydrogen nano particle formation since there is no nickel present in the
volume of the mouse. The hydrogen must react with the bulk metal in and
around the mouse.





On Fri, May 24, 2013 at 6:07 PM, Axil Axil <janap...@gmail.com> wrote:

> In the polariton theory, the hydrogen serves as a dielectric to surround
> all nano/micro particles (NMP). The spaces between the NMP serve as the
> nuclear active sites(NAS).
>
>
>
>
>
> NMP formation requires a hot area where vaporization of a material can
> occur, and a cold zone where the vapor can condense into NMPs.
>
>
>
>
>
> This kind of condensation cycle occurs with cesium between 800K and 1500K
> in a thermoelectric generator as I have posted before.
>
>
>
> As long as the hydrogen does not escape the reactor, the NAS can form if a
> condensation cycle between a hot zone and a cold zone can be maintained.
>
>
>
>
>
> Hydrogen can form NMPs, along with potassium and carbon. Nickel NMS would
> have become liquid and therefore, removed from the reaction.
>
>
>
>
>
> The Silicon nitride ceramic would not have produced vapor.
>
>
>
> One question is as follows: what was the gas in the volume between the
> inner reaction chamber and the outer shell? That gas may have participated
> in the reaction.
>
>
>
>
>
>
>
>
> On Fri, May 24, 2013 at 5:42 PM, Edmund Storms <stor...@ix.netcom.com>wrote:
>
>> OK Axil, I presume from this description you assume ALL of the cylinder
>> containing the Ni+H2 melted along with the surrounding ceramic, which in
>> your mind meant the temperature got to and stayed abouve 2000° long enough
>> to completely melt the stainless container and surrounding ceramic. Is this
>> correct?
>>
>> Normally, a device making energy will be hotter in some regions than
>> others. If the temperature gets too hot, the hottest point will melt, which
>> in this case would allow all the H2 to leave. This would immediately stop
>> the source of energy. Once this happens, were does the energy come from to
>> melt the rest of the material?
>>
>> Actually, I expect a small; amount of liquid metal would contact the
>> ceramic, lower its melting point, and produce a small amount of local melt.
>> The description was not detailed enough to properly describe what actually
>> happened. Until we see a picture of the melted region, what is the purpose
>> of your speculation?
>>
>> Ed Storms
>>
>> On May 24, 2013, at 3:29 PM, Axil Axil wrote:
>>
>> The performance of this device was such that the reactor was destroyed,
>> melting the internal steel cylinder and the surrounding ceramic layers."
>>
>> This info tells me that the inner secure reaction chamber and the
>> surrounding ceramic core melted, but not the outer air cooled surrounding
>> shell.
>>
>> *The reactor was not exposed to the air through a breach in the outer
>> shell.*
>>
>>
>> On Fri, May 24, 2013 at 5:21 PM, David L Babcock 
>> <ol...@rochester.rr.com>wrote:
>>
>>>  I have no idea what it would take to "ignite" stainless steel, but
>>> this may be what happened.  A breech occurred, air entered, steel burned.
>>> Enough extra heat generated to melt the ceramic.
>>>
>>> The chemical energy for this short event would be plenty, no need to
>>> have NAEs still operable in liquid state!
>>>
>>> Ol' Bab, who was as engineer...
>>>
>>>
>>>
>>> On 5/24/2013 2:38 PM, Edmund Storms wrote:
>>>
>>> Please people, stay in the real world. The description Alex gives has no
>>> relationship to what has been described in the paper or to what is
>>> possible.  We have no way of knowing the melting point of that material
>>> claim to melt. We have no way of knowing how much melted. At the vary
>>> least, once the stainless steel container in which the Ni was located
>>> formed a hole, the H2 would escape and the nuclear reaction would stop. In
>>> addition, we do not know the melting point of the Ni in the container
>>> because it was reacted with a secret catalyst. In other words, we know
>>> nothing that would support such speculations.
>>>
>>>  Ed Storms
>>>
>>>
>>>  On May 24, 2013, at 12:17 PM, David Roberson wrote:
>>>
>>>  Axil,
>>>
>>> You pose some interesting questions.  If what you suggest is true, then
>>> this form of LENR would be a bulk effect.
>>>
>>> Dave
>>> -----Original Message-----
>>> From: Axil Axil <janap...@gmail.com>
>>> To: vortex-l <vortex-l@eskimo.com>
>>> Sent: Fri, May 24, 2013 2:12 pm
>>> Subject: Re: EXTERNAL: [Vo]:My evaluation of the Rossi test
>>>
>>>  The other very important piece of the puzzle that this Rossi demo has
>>> revealed is how extreme the LENR can get. This tells us important new
>>> things about the LENR reaction.
>>> When the E-Cat melts down, its temperature reaches at least 2000C. The
>>> melting point of the ceramic used is in that temperature range.
>>>  We know that ceramic is used in the reactor and that the LENR reaction
>>> can melt it. This is exciting.
>>> At that temperature, the nickel powder and the AISI 310 steel has long
>>> reached its melting point.
>>> The LENR reaction must be able to function in a liquid metal
>>> environment. The concept of an NAE supported in only solid material must be
>>> discarded.
>>> LENR must function in liquid and vapor.
>>> Riddle me that one batman.
>>> Collective, in other words, I will be awaiting your theories.
>>>
>>>
>>>  SNIP
>>>
>>>
>>>
>>>
>>
>>
>

Reply via email to