Normally Newton Raphson method doesn't converge for distribution systems due to high r/x ratios
On Mon, Apr 8, 2019, 22:48 Carlos A. Castro <[email protected]> wrote: > Dear Nitya > > I would do two things: > > 1. I would replace all commas "," by points "." in the data file. > > 2. I would try to draw the one line diagram of the network based on the > data, to check whether the network is all connected, that is, that there > are no isolated buses or group of buses, > > Good luck, > > Carlos > > > Em seg, 8 de abr de 2019 às 14:42, Nitya Kirana <[email protected]> > escreveu: > >> Dear all, >> >> I have run the power flow of 64 radial test bus system using Newton >> Raphson in Matpower 4.1. It shows the result of power losses but it >> doesn't converge, whenever I run the matlab, the result is always >> different, and I don't know what's the problem. Can anyone help me? because >> this is my final project. It shows "Warning: Matrix is singular to >> working precision." >> >> So, here is my data : >> >> bus data >> bus type Pd Qd Gs Bs >> area Vm Va baseKV zone Vmax Vmin >> 1 3 0 0 0 0 1 1 0 20 1 1 0,9 >> 2 3 0 0 0 0 1 1 0 20 1 1 0,9 >> 3 3 0 0 0 0 1 1 0 20 1 1 0,9 >> 4 1 0,0136 0,016256 0 0 1 1 0 20 1 1 0,9 >> 5 1 0,0204 0,024384 0 0 1 1 0 20 1 1 0,9 >> 6 1 0 0 0 0 1 1 0 20 1 1 0,9 >> 7 1 0,07684 0,091846 0 0 1 1 0 20 1 1 0,9 >> 8 1 0,02856 0,034138 0 0 1 1 0 20 1 1 0,9 >> 9 1 0,03808 0,045517 0 0 1 1 0 20 1 1 0,9 >> 10 1 0,0238 0,028448 0 0 1 1 0 20 1 1 0,9 >> 11 1 0,01768 0,021133 0 0 1 1 0 20 1 1 0,9 >> 12 1 0,017 0,02032 0 0 1 1 0 20 1 1 0,9 >> 13 1 0,022304 0,02666 0 0 1 1 0 20 1 1 0,9 >> 14 1 0,0204 0,002438 0 0 1 1 0 20 1 1 0,9 >> 15 1 0,05848 0,069901 0 0 1 1 0 20 1 1 0,9 >> 16 1 0,26384 0,315366 0 0 1 1 0 20 1 1 0,9 >> 17 1 0,03774 0,04511 0 0 1 1 0 20 1 1 0,9 >> 18 1 0,0204 0,002438 0 0 1 1 0 20 1 1 0,9 >> 19 1 0,05576 0,06665 0 0 1 1 0 20 1 1 0,9 >> 20 1 0,0136 0,016256 0 0 1 1 0 20 1 1 0,9 >> 21 1 0,0306 0,016256 0 0 1 1 0 20 1 1 0,9 >> 22 1 0,0204 0,024384 0 0 1 1 0 20 1 1 0,9 >> 23 1 0,0272 0,032512 0 0 1 1 0 20 1 1 0,9 >> 24 1 0,11764 0,140614 0 0 1 1 0 20 1 1 0,9 >> 25 1 0,0068 0,008128 0 0 1 1 0 20 1 1 0,9 >> 26 1 0,0136 0,016256 0 0 1 1 0 20 1 1 0,9 >> 27 1 0,0238 0,028448 0 0 1 1 0 20 1 1 0,9 >> 28 1 0,112948 0,135006 0 0 1 1 0 20 1 1 0,9 >> 29 1 0,02176 0,02601 0 0 1 1 0 20 1 1 0,9 >> 30 1 0 0 0 0 1 1 0 20 1 1 0,9 >> 31 1 0,01768 0,021133 0 0 1 1 0 20 1 1 0,9 >> 32 1 0,05168 0,061773 0 0 1 1 0 20 1 1 0,9 >> 33 1 0,03468 0,041453 0 0 1 1 0 20 1 1 0,9 >> 34 1 0,02856 0,034138 0 0 1 1 0 20 1 1 0,9 >> 35 1 0,0272 0,032512 0 0 1 1 0 20 1 1 0,9 >> 36 1 0,01768 0,021133</fon >> >
