Dear Nitya use forward-backward sweep algorithm for the power flow of this system.
Have a nice day Regards, DR. FIAZ AHMAD PhD Mechatronics Engineering (Sabanci University, Istanbul Turkey), Mob: 0092-332-9124525, On Tue, Apr 9, 2019 at 9:51 AM Nitya Kirana <[email protected]> wrote: > Dear Fiaz Ahmad, > > Okay thank you, so what's your recommendation for this power system > analysis method? > *Best Regards,* > > *Putu Diah Nitya Kirana,* > > Assistant and Researcher at Electric Energy Conversion Laboratory B101 > Electrical Engineering Department > Faculty of Electrical Technology > Institut Teknologi Sepuluh Nopember > Surabaya, Indonesia > > +62 8170 3178 248 > > > > On Tue, 9 Apr 2019 at 01:04, Fiaz Ahmad <[email protected]> wrote: > >> Normally Newton Raphson method doesn't converge for distribution systems >> due to high r/x ratios >> >> On Mon, Apr 8, 2019, 22:48 Carlos A. Castro <[email protected]> wrote: >> >>> Dear Nitya >>> >>> I would do two things: >>> >>> 1. I would replace all commas "," by points "." in the data file. >>> >>> 2. I would try to draw the one line diagram of the network based on the >>> data, to check whether the network is all connected, that is, that there >>> are no isolated buses or group of buses, >>> >>> Good luck, >>> >>> Carlos >>> >>> >>> Em seg, 8 de abr de 2019 às 14:42, Nitya Kirana < >>> [email protected]> escreveu: >>> >>>> Dear all, >>>> >>>> I have run the power flow of 64 radial test bus system using Newton >>>> Raphson in Matpower 4.1. It shows the result of power losses but it >>>> doesn't converge, whenever I run the matlab, the result is always >>>> different, and I don't know what's the problem. Can anyone help me? because >>>> this is my final project. It shows "Warning: Matrix is singular to >>>> working precision." >>>> >>>> So, here is my data : >>>> >>>> bus data >>>> bus type Pd Qd Gs Bs >>>> area Vm Va baseKV zone Vmax Vmin >>>> 1 3 0 0 0 0 1 1 0 20 1 1 0,9 >>>> 2 3 0 0 0 0 1 1 0 20 1 1 0,9 >>>> 3 3 0 0 0 0 1 1 0 20 1 1 0,9 >>>> 4 1 0,0136 0,016256 0 0 1 1 0 20 1 1 0,9 >>>> 5 1 0,0204 0,024384 0 0 1 1 0 20 1 1 0,9 >>>> 6 1 0 0 0 0 1 1 0 20 1 1 0,9 >>>> 7 1 0,07684 0,091846 0 0 1 1 0 20 1 1 0,9 >>>> 8 1 0,02856 0,034138 0 0 1 1 0 20 1 1 0,9 >>>> 9 1 0,03808 0,045517 0 0 1 1 0 20 1 1 0,9 >>>> 10 1 0,0238 0,028448 0 0 1 1 0 20 1 1 0,9 >>>> 11 1 0,01768 0,021133 0 0 1 1 0 20 1 1 0,9 >>>> 12 1 0,017 0,02032 0 0 1 1 0 20 1 1 0,9 >>>> 13 1 0,022304 0,02666 0 0 1 1 0 20 1 1 0,9 >>>> 14 1 0,0204 0,002438 0 0 1 1 0 20 1 1 0,9 >>>> 15 1 0,05848 0,069901 0 0 1 1 0 20 1 1 0,9 >>>> 16 1 0,26384 0,315366 0 0 1 1 0 20 1 1 0,9 >>>> 17 1 0,03774 0,04511 0 0 1 1 0 20 1 1 0,9 >>>> 18 1 0,0204 0,002438 0 0 1 1 0 20 1 1 0,9 >>>> 19 1 0,05576 0,06665 0 0 1 1 0 20 1 1 0,9 >>>> 20 1 0,0136 0,016256 0 0 1 1 0 20 1 1 0,9 >>>> 21 1 0,0306 0,016256 0 0 1 1 0 20 1 1 0,9 >>>> 22 1 0,0204 0,024384 0 0 1 1 0 20 1 1 0,9 >>>> 23 1 0,0272 0,032512 0 0 1 1 0 20 1 1 0,9 >>>> 24 1 0,11764 0,140614 0 0 1 1 0 20 1 1 0,9 >>>> 25 1 0,0068 0,008128 0 0 1 1 0 20 1 1 0,9 >>>> 26 1 0,0136 0,016256 0 0 1 1 0 20 1 1 0,9 >>>> 27 1 0,0238 0,028448 0 0 1 1 0 20 1 1 0,9 >>>> 28 1 0,112948 0,135006 0 0 1 1 0 20 1 1 0,9 >>>> 29 1 0,02176 0,02601 0 0 1 1 0 20 1 1 0,9 >>>> 30 1 0 0 0 0 1 1 0 20 1 1 0,9 >>>> 31 1 0,01768 0,021133 0 0 1 1 0 20 1 1 0,9 >>>> 32 1 0,05168 0,061773 0 0 1 1 0 20 1 1 0,9 >>>> 33 1 0,03468 0,041453 0 0 1 1 0 20 1 1 0,9 >>>> 34 1 0,02856 0,034138 0 0 1 1 0 20 1 1 0,9 >>>> 35 1 0,0272 0,032512 0 0 1 1 0 20 1 1 0,9 >>>> 36 1 0,01768 0,021133</fon >>>> >>>
