Dear Fiaz Ahmad, Okay thank you, so what's your recommendation for this power system analysis method? *Best Regards,*
*Putu Diah Nitya Kirana,* Assistant and Researcher at Electric Energy Conversion Laboratory B101 Electrical Engineering Department Faculty of Electrical Technology Institut Teknologi Sepuluh Nopember Surabaya, Indonesia +62 8170 3178 248 On Tue, 9 Apr 2019 at 01:04, Fiaz Ahmad <[email protected]> wrote: > Normally Newton Raphson method doesn't converge for distribution systems > due to high r/x ratios > > On Mon, Apr 8, 2019, 22:48 Carlos A. Castro <[email protected]> wrote: > >> Dear Nitya >> >> I would do two things: >> >> 1. I would replace all commas "," by points "." in the data file. >> >> 2. I would try to draw the one line diagram of the network based on the >> data, to check whether the network is all connected, that is, that there >> are no isolated buses or group of buses, >> >> Good luck, >> >> Carlos >> >> >> Em seg, 8 de abr de 2019 às 14:42, Nitya Kirana <[email protected]> >> escreveu: >> >>> Dear all, >>> >>> I have run the power flow of 64 radial test bus system using Newton >>> Raphson in Matpower 4.1. It shows the result of power losses but it >>> doesn't converge, whenever I run the matlab, the result is always >>> different, and I don't know what's the problem. Can anyone help me? because >>> this is my final project. It shows "Warning: Matrix is singular to >>> working precision." >>> >>> So, here is my data : >>> >>> bus data >>> bus type Pd Qd Gs Bs >>> area Vm Va baseKV zone Vmax Vmin >>> 1 3 0 0 0 0 1 1 0 20 1 1 0,9 >>> 2 3 0 0 0 0 1 1 0 20 1 1 0,9 >>> 3 3 0 0 0 0 1 1 0 20 1 1 0,9 >>> 4 1 0,0136 0,016256 0 0 1 1 0 20 1 1 0,9 >>> 5 1 0,0204 0,024384 0 0 1 1 0 20 1 1 0,9 >>> 6 1 0 0 0 0 1 1 0 20 1 1 0,9 >>> 7 1 0,07684 0,091846 0 0 1 1 0 20 1 1 0,9 >>> 8 1 0,02856 0,034138 0 0 1 1 0 20 1 1 0,9 >>> 9 1 0,03808 0,045517 0 0 1 1 0 20 1 1 0,9 >>> 10 1 0,0238 0,028448 0 0 1 1 0 20 1 1 0,9 >>> 11 1 0,01768 0,021133 0 0 1 1 0 20 1 1 0,9 >>> 12 1 0,017 0,02032 0 0 1 1 0 20 1 1 0,9 >>> 13 1 0,022304 0,02666 0 0 1 1 0 20 1 1 0,9 >>> 14 1 0,0204 0,002438 0 0 1 1 0 20 1 1 0,9 >>> 15 1 0,05848 0,069901 0 0 1 1 0 20 1 1 0,9 >>> 16 1 0,26384 0,315366 0 0 1 1 0 20 1 1 0,9 >>> 17 1 0,03774 0,04511 0 0 1 1 0 20 1 1 0,9 >>> 18 1 0,0204 0,002438 0 0 1 1 0 20 1 1 0,9 >>> 19 1 0,05576 0,06665 0 0 1 1 0 20 1 1 0,9 >>> 20 1 0,0136 0,016256 0 0 1 1 0 20 1 1 0,9 >>> 21 1 0,0306 0,016256 0 0 1 1 0 20 1 1 0,9 >>> 22 1 0,0204 0,024384 0 0 1 1 0 20 1 1 0,9 >>> 23 1 0,0272 0,032512 0 0 1 1 0 20 1 1 0,9 >>> 24 1 0,11764 0,140614 0 0 1 1 0 20 1 1 0,9 >>> 25 1 0,0068 0,008128 0 0 1 1 0 20 1 1 0,9 >>> 26 1 0,0136 0,016256 0 0 1 1 0 20 1 1 0,9 >>> 27 1 0,0238 0,028448 0 0 1 1 0 20 1 1 0,9 >>> 28 1 0,112948 0,135006 0 0 1 1 0 20 1 1 0,9 >>> 29 1 0,02176 0,02601 0 0 1 1 0 20 1 1 0,9 >>> 30 1 0 0 0 0 1 1 0 20 1 1 0,9 >>> 31 1 0,01768 0,021133 0 0 1 1 0 20 1 1 0,9 >>> 32 1 0,05168 0,061773 0 0 1 1 0 20 1 1 0,9 >>> 33 1 0,03468 0,041453 0 0 1 1 0 20 1 1 0,9 >>> 34 1 0,02856 0,034138 0 0 1 1 0 20 1 1 0,9 >>> 35 1 0,0272 0,032512 0 0 1 1 0 20 1 1 0,9 >>> 36 1 0,01768 0,021133</fon >>> >>
