Dear Fiaz Ahmad,

I actually have run the simulation for IEEE 33 bus, 16 bus, and 69 bus
using Newton Raphson method and the result is convergen. And also in IEEE
33 bus it has the ratio R/X greater than mine, so I just think that the
problem is not the Newton Raphson method. Anw, thank you for your
recommendation.


*Best Regards, *

*Putu Diah Nitya Kirana,*

Assistant and Researcher at Electric Energy Conversion Laboratory B101
Electrical Engineering Department
Faculty of Electrical Technology
Institut Teknologi Sepuluh Nopember
Surabaya, Indonesia

+62 8170 3178 248



On Tue, 9 Apr 2019 at 11:54, Fiaz Ahmad <[email protected]> wrote:

> Dear Nitya use forward-backward sweep algorithm for the power flow of this
> system.
>
>
> Have a nice day
>
> Regards,
> DR. FIAZ AHMAD
> PhD Mechatronics Engineering (Sabanci University, Istanbul Turkey),
> Mob: 0092-332-9124525,
>
>
>
>
>
>
> On Tue, Apr 9, 2019 at 9:51 AM Nitya Kirana <[email protected]>
> wrote:
>
>> Dear Fiaz Ahmad,
>>
>> Okay thank you, so what's your recommendation for this power system
>> analysis method?
>> *Best Regards,*
>>
>> *Putu Diah Nitya Kirana,*
>>
>> Assistant and Researcher at Electric Energy Conversion Laboratory B101
>> Electrical Engineering Department
>> Faculty of Electrical Technology
>> Institut Teknologi Sepuluh Nopember
>> Surabaya, Indonesia
>>
>> +62 8170 3178 248
>>
>>
>>
>> On Tue, 9 Apr 2019 at 01:04, Fiaz Ahmad <[email protected]>
>> wrote:
>>
>>> Normally Newton Raphson method doesn't converge for distribution systems
>>> due to high r/x ratios
>>>
>>> On Mon, Apr 8, 2019, 22:48 Carlos A. Castro <[email protected]> wrote:
>>>
>>>> Dear Nitya
>>>>
>>>> I would do two things:
>>>>
>>>> 1. I would replace all commas "," by points "." in the data file.
>>>>
>>>> 2. I would try to draw the one line diagram of the network based on the
>>>> data, to check whether the network is all connected, that is, that there
>>>> are no isolated buses or group of buses,
>>>>
>>>> Good luck,
>>>>
>>>> Carlos
>>>>
>>>>
>>>> Em seg, 8 de abr de 2019 às 14:42, Nitya Kirana <
>>>> [email protected]> escreveu:
>>>>
>>>>> Dear all,
>>>>>
>>>>> I have run the power flow of 64 radial test bus system using Newton
>>>>> Raphson in Matpower 4.1. It shows the result of power losses but it
>>>>> doesn't converge, whenever I run the matlab, the result is always
>>>>> different, and I don't know what's the problem. Can anyone help me? 
>>>>> because
>>>>> this is my final project. It shows "Warning: Matrix is singular to
>>>>> working precision."
>>>>>
>>>>> So, here is my data :
>>>>>
>>>>> bus data
>>>>>          bus               type    Pd          Qd               Gs Bs
>>>>> area Vm            Va baseKV zone        Vmax          Vmin
>>>>> 1 3 0 0 0 0 1 1 0 20 1 1 0,9
>>>>> 2 3 0 0 0 0 1 1 0 20 1 1 0,9
>>>>> 3 3 0 0 0 0 1 1 0 20 1 1 0,9
>>>>> 4 1 0,0136 0,016256 0 0 1 1 0 20 1 1 0,9
>>>>> 5 1 0,0204 0,024384 0 0 1 1 0 20 1 1 0,9
>>>>> 6 1 0 0 0 0 1 1 0 20 1 1 0,9
>>>>> 7 1 0,07684 0,091846 0 0 1 1 0 20 1 1 0,9
>>>>> 8 1 0,02856 0,034138 0 0 1 1 0 20 1 1 0,9
>>>>> 9 1 0,03808 0,045517 0 0 1 1 0 20 1 1 0,9
>>>>> 10 1 0,0238 0,028448 0 0 1 1 0 20 1 1 0,9
>>>>> 11 1 0,01768 0,021133 0 0 1 1 0 20 1 1 0,9
>>>>> 12 1 0,017 0,02032 0 0 1 1 0 20 1 1 0,9
>>>>> 13 1 0,022304 0,02666 0 0 1 1 0 20 1 1 0,9
>>>>> 14 1 0,0204 0,002438 0 0 1 1 0 20 1 1 0,9
>>>>> 15 1 0,05848 0,069901 0 0 1 1 0 20 1 1 0,9
>>>>> 16 1 0,26384 0,315366 0 0 1 1 0 20 1 1 0,9
>>>>> 17 1 0,03774 0,04511 0 0 1 1 0 20 1 1 0,9
>>>>> 18 1 0,0204 0,002438 0 0 1 1 0 20 1 1 0,9
>>>>> 19 1 0,05576 0,06665 0 0 1 1 0 20 1 1 0,9
>>>>> 20 1 0,0136 0,016256 0 0 1 1 0 20 1 1 0,9
>>>>> 21 1 0,0306 0,016256 0 0 1 1 0 20 1 1 0,9
>>>>> 22 1 0,0204 0,024384 0 0 1 1 0 20 1 1 0,9
>>>>> 23 1 0,0272 0,032512 0 0 1 1 0 20 1 1 0,9
>>>>> 24 1 0,11764 0,140614 0 0 1 1 0 20 1 1 0,9
>>>>> 25 1 0,0068 0,008128 0 0 1 1 0 20 1 1 0,9
>>>>> 26 1 0,0136 0,016256 0 0 1 1 0 20 1 1 0,9
>>>>> 27 1 0,0238 0,028448 0 0 1 1 0 20 1 1 0,9
>>>>> 28 1 0,112948 0,135006 0 0 1 1 0 20 1 1 0,9
>>>>> 29 1 0,02176 0,02601 0 0 1 1 0 20 1 1 0,9
>>>>> 30 1 0 0 0 0 1 1 0 20 1 1 0,9
>>>>> 31 1 0,01768 0,021133 0 0 1 1 0 20 1 1 0,9
>>>>> 32 1 0,05168 0,061773 0 0 1 1 0 20 1 1 0,9
>>>>> 33 1 0,03468 0,041453 0 0 1 1 0 20 1 1 0,9
>>>>> 34 1 0,02856 0,034138 0 0 1 1 0 20 1 1 0,9
>>>>> 35 1 0,0272 0,032512 0 0 1 1 0 20 1 1 0,9
>>>>> 36 1 0,01768 0,021133</fon
>>>>>
>>>>

Reply via email to