vc quer calcular limite quando n vai pro infinito de:

 \frac{ \sum_{k=0}^n \frac{1}{\sqrt{2k+1}} }{  \sum_{k=1}^n
\frac{1}{\sqrt{2k}} } + 1 =
\frac{ \sum_{k=1}^n \frac{1}{\sqrt{k}} }{  \sum_{k=1}^n \frac{1}{\sqrt{2k}}
} =
\sqrt{2}  \frac{ \sum_{k=1}^2n \frac{1}{\sqrt{k}} }{  \sum_{k=1}^n
\frac{1}{\sqrt{k}} } =
\sqrt{2}  [1 + \frac{ \sum_{k=n}^2n \frac{1}{\sqrt{k + n}} }{  \sum_{k=1}^n
\frac{1}{\sqrt{k}} } ] =
\sqrt{2} + \sqrt{2}  \frac{ \sum_{k=n}^2n \frac{1}{\sqrt{k + n}} }{
\sum_{k=1}^n \frac{1}{\sqrt{k}} }

Mas \frac{ \sum_{k=n}^2n \frac{1}{\sqrt{k + n}} }{  \sum_{k=1}^n
\frac{1}{\sqrt{k}} } vai pra zero com n, para ver basta usar que a média
dos quadrados é maior ou igual a média aritmética, assim:

\sum_{k=n}^2n \frac{1}{\sqrt{k}} \leq \frac{1}{n}\sqrt{\sum_{k=n}^2n
\frac{1}{k + n}} <

\frac{1}{n}\sqrt{\sum_{k=n}^2n \frac{1}{n}} = \frac{1}{n}.

Enquanto \sum_{k=1}^n \frac{1}{\sqrt{k}} > 1.

Responder a