O sólido é a região do 1o octante (todas as coordenadas positivas)
compreendida entre os planos x-z e y-z, acima do plano z = (x+y)/2 e abaixo
da z = raiz(x+y).
A superfície e o plano se intersectam numa reta:
raiz(x+y) = (x+y)/2 ==> x+y = (x+y)^2/4 ==> x+y = 4, contida no plano z = 2.

Assim, o volume pode ser dado pela diferença entre duas integrais duplas,
calculadas sobre o domínio D, no plano x-y, dado por x > 0, y > 0 e x+y = 4.
Volume = Integral(D) raiz(x+y)*dA - Integral(D) (x+y)/2*dA.

Usando coordenadas cartesianas, a primeira integral fica:
Integral(x=0...4)Integral(y=0...4-x)*raiz(x+y)*dy*dx
= Integral(0...4) (2/3)*(4^(3/2) - x^(3/2))*dx
= Integral(0...4) (16/3 - (2/3)*x^(3/2))
= 64/3 - (4/15)*4^(5/2)
= 64/3 - 128/15
= 64/5

A segunda integral é:
Integral(x=0...4)Integral(y=0...4-x) (x+y)/2*dy*dx
= Integral(x=0...4) (1/2)*(x*(4-x) + (4-x)^2/2)*dx
= Integral(0...4) (4 - x^2/4)*dx
= 32/3

Logo, o volume é 64/5 - 32/3 = 32/15  (se não errei nenhuma conta...)

[]s,
Claudio.


On Mon, Feb 3, 2020 at 8:55 PM Luiz Antonio Rodrigues <rodrigue...@gmail.com>
wrote:

> Olá, pessoal!
> Tudo bem?
> Estou tentando resolver o seguinte problema:
>
> Ache o volume da região tridimensional definida por:
>
> z^2<x+y<2*z
>
> Sendo que:
> x>0 e y>0 e z>0
>
> Com o auxílio de um software eu consegui visualizar o sólido em questão.
> Eu calculei o volume do sólido girando em torno do eixo z e dividindo o
> resultado por 4.
> A resposta que eu obtive foi (16*pi)/15, que não está correta.
> Já refiz os cálculos muitas vezes e chego sempre na mesma resposta.
> Alguém pode me ajudar?
> Muito obrigado e um abraço!
>
> --
> Esta mensagem foi verificada pelo sistema de antivírus e
> acredita-se estar livre de perigo.

-- 
Esta mensagem foi verificada pelo sistema de antiv�rus e
 acredita-se estar livre de perigo.

Responder a