On 09/08/2013 06:51 PM, Olivier Grisel wrote:
> I just had a look at the results section and it looks very 
> interesting, in particular in its ability to bring noise robustness to 
> single linkage. Have you tried to compare it with ward? 
FYI the output of "examples.py" for the smaller datasets. You can run it 
for the rest if you want.

Dataset Iris Plants Database samples: 147, features: 4, clusters: 3
======================================================================
ITM             ARI: 0.882, AMI: 0.866, NMI: 0.868 objective: 1.237 
time:0.21
ITM ID          ARI: 0.882, AMI: 0.866, NMI: 0.868 objective: 1.237 
time:0.08
Ward            ARI: 0.737, AMI: 0.762, NMI: 0.774 objective: 1.195 
time:0.01
KMeans          ARI: 0.737, AMI: 0.753, NMI: 0.762 objective: 1.197 
time:0.05
GT objective: 1.178


Dataset mldata.org dataset: vehicle samples: 846, features: 18, clusters: 4
======================================================================
ITM             ARI: 0.141, AMI: 0.166, NMI: 0.170 objective: 8.426 
time:0.46
ITM ID          ARI: 0.113, AMI: 0.145, NMI: 0.148 objective: 8.425 
time:0.54
Ward            ARI: 0.098, AMI: 0.122, NMI: 0.128 objective: 8.308 
time:0.75
KMeans          ARI: 0.076, AMI: 0.096, NMI: 0.100 objective: 8.097 
time:0.35
GT objective: 6.924


Dataset mldata.org dataset: vowel samples: 990, features: 10, clusters: 11
======================================================================
ITM             ARI: 0.195, AMI: 0.385, NMI: 0.403 objective: 8.512 
time:0.72
ITM ID          ARI: 0.209, AMI: 0.385, NMI: 0.401 objective: 8.510 
time:0.80
Ward            ARI: 0.155, AMI: 0.346, NMI: 0.367 objective: 8.309 
time:1.09
KMeans          ARI: 0.161, AMI: 0.348, NMI: 0.365 objective: 7.947 
time:0.39
GT objective: 7.994


Dataset  Optical Recognition of Handwritten Digits Data Set samples: 
1797, features: 64, clusters: 10
======================================================================
ITM             ARI: 0.838, AMI: 0.883, NMI: 0.886 objective: -186.152 
time:2.15
ITM ID          ARI: 0.674, AMI: 0.785, NMI: 0.793 objective: -186.248 
time:3.26
Ward            ARI: 0.794, AMI: 0.856, NMI: 0.868 objective: -186.240 
time:9.22
KMeans          ARI: 0.667, AMI: 0.739, NMI: 0.746 objective: -187.357 
time:1.32
GT objective: -186.250


Dataset Modified Olivetti faces dataset. samples: 400, features: 4096, 
clusters: 40
======================================================================
/home/local/lamueller/checkout/information_theoretic_mst/itm.py:87: 
UserWarning: Got dataset with n_samples < n_features. Setting intrinsic 
dimensionality to n_samples. This is most likely to high, leading to 
uneven clusters. It is recommendet to set infer_dimensionality=True.
   warnings.warn("Got dataset with n_samples < n_features. Setting"
ITM             ARI: 0.162, AMI: 0.475, NMI: 0.719 objective: -6622.173 
time:5.50
ITM ID          ARI: 0.549, AMI: 0.705, NMI: 0.832 objective: -6691.920 
time:8.37
Ward            ARI: 0.491, AMI: 0.670, NMI: 0.813 objective: -6702.053 
time:0.78
KMeans          ARI: 0.458, AMI: 0.620, NMI: 0.780 objective: -6805.311 
time:29.97
GT objective: -6787.981

No parameters were adjusted for any algorithm. By showing ITM and ITM ID
I obviously make my life easier by not picking a single setting.
Still, ITM ID wins against ward 4 out of 5 times. The disclaimer is that 
this is evaluation
of clustering algorithms using classification datasets and I leave it to you
to decide if this is meaningful ;)


andy



------------------------------------------------------------------------------
Learn the latest--Visual Studio 2012, SharePoint 2013, SQL 2012, more!
Discover the easy way to master current and previous Microsoft technologies
and advance your career. Get an incredible 1,500+ hours of step-by-step
tutorial videos with LearnDevNow. Subscribe today and save!
http://pubads.g.doubleclick.net/gampad/clk?id=58041391&iu=/4140/ostg.clktrk
_______________________________________________
Scikit-learn-general mailing list
Scikit-learn-general@lists.sourceforge.net
https://lists.sourceforge.net/lists/listinfo/scikit-learn-general

Reply via email to