Status: Accepted
Owner: asmeurer
CC: mattpap
Labels: Type-Defect Priority-High Polynomial

New issue 2032 by asmeurer: Ability to work with K[x, 1/x] in Polys
http://code.google.com/p/sympy/issues/detail?id=2032

In [32]: p = -(27 + 162*y - 27*x*y)/(36*z + x**2*z - 12*x*z)

In [33]: p
-(27 + 162⋅y - 27⋅x⋅y)
──────────────────────
                    2
 36⋅z - 12⋅x⋅z + z⋅x

In [34]: factor(p)
-27⋅(1 + 6⋅y - x⋅y)
───────────────────
              2
     z⋅(6 - x)

In [35]: p.as_poly(1/z)
Poly((-34992*z**2 - 209952*y*z**2 - 5832*x**2*z**2 - 27*x**4*z**2 + 648*x**3*z**2 + 23328*x*z**2 - 58320*y*x**2*z**2 - 810*y*x**4*z**2 + 27*y*x**5*z**2 + 9720*y*x**3*z**2 + 1749 60*x*y*z**2)/(46656*z**3 + x**6*z**3 - 46656*x*z**3 - 4320*x**3*z**3 - 36*x**5*z**3 + 540*x**4*z**3 + 19440*x**2*z**3), 1/z, domain='ZZ(x,y,z)')

In [36]: p.as_poly(z)
None

In [37]: p.as_poly(z, 1/z)
None

I need the ability to work over K[x, 1/x] in Polys. Actually, I then do p.as_poly(t, 1/t).replace(1/t, z), so I am open to work-around. Really, I just need to get the coefficient of each t**n term, where n is any (positive or negative) integer.


--
You received this message because you are subscribed to the Google Groups 
"sympy-issues" group.
To post to this group, send email to [email protected].
To unsubscribe from this group, send email to 
[email protected].
For more options, visit this group at 
http://groups.google.com/group/sympy-issues?hl=en.

Reply via email to