On 10 Aug 2012, at 14:24, Roger wrote:

Hi Bruno Marchal

Rationality isn't a very useful function. I only use it when I get in trouble.
I don't need it to drive my car or do practically anything.

I doubt this. If you want to go on the left, you act accordingly, and that is a use of rationnality. We are rational all the times (except when doing philosophy perhaps :)




I don't have more than a scanty definition of my ladyfriend,  and
    only she knows if this is correct, but I can still talk to her.

And the highest form of prayer (centering prayer) is simply wordless intention. And even higher, even the intention drops off (you stop doing praying and just be with God).
I have only done this once in my life.

Zen masters call this the Void. I would call it the Plenum.

There are many path and all words miss it. But this can be explained in computer science through the use of the self-referential logics. You might read my papers on the subject perhaps. Mechanism is very close to Descartes and Leibniz, and also Plato and the neoplatonist. It is incompatible with Aristotle notion of primary matter and physicalism. In fact physics become a branch of machine's psychology, or theology, or simply theoretical computer science, itself embeddable in elementary arithmetic (that is not obvious, but well known by logicians since Gödel's 1931 paper).

Bruno




Roger , rclo...@verizon.net
8/10/2012
----- Receiving the following content -----
From: Bruno Marchal
Receiver: everything-list
Time: 2012-08-10, 05:22:59
Subject: Re: God has no name

Hi Roger,

On 07 Aug 2012, at 11:53, Roger wrote:

Hi Bruno Marchal


OUR FATHER, WHICH ART IN HEAVBEN,
HALLOWED BE THY NAME.

Luther said that to meditate of the sacredness of God
according to this phrase is the oldest prayer.

In old testament times, God's name was considered too sacred to speak
by the Jews. The King James Bible uses YHWH, the Jews never say "God" as far as I
know, they sometimes write it as G*d.

We have relaxed these constrictions in the protestant tradition,
use Jehovah and all sorts of  other sacfed names.

It is the problem with the notions of God, Whole, Truth, consciousness, etc. we can't define them. You can sum up Damascius by "one sentence on the ineffable is already one sentence too much, it can only miss the point". (But Damascius wrote thousand of pages on this!).

Like Lao Tseu said that the genuine wise man is mute, also. John Clark said it recently too!

This is actually well explained (which does not mean that the explanation is correct) by computer science: a universal machine can look inward and prove things about itself, including that there are true proposition that she cannot prove as far as she is consistent, that machine-truth is not expressible, etc. My last paper (in french) is entitled "la machine mystique" (the mystical machine) and concerns all the things that a machine might know without being able to justify it rationally and which might be counter-intuitive from her own point of view.

The word "god" is not problematical ... as long as we don't take the word too much seriously. You can say "I search God", but you can't say "I found God", and still less things like "God told me to tell you to send me money or you will go to hell".

God is more a project or a hope for an explanation. It cannot be an explanation itself. For a scientist: it is more a problem than a solution, like consciousness, for example.

Bruno






Roger , rclo...@verizon.net
8/7/2012 Is life a cause/effect activity  ?
If so, what is the cause agent ?

----- Receiving the following content -----
From: Bruno Marchal
Receiver: everything-list
Time: 2012-08-07, 05:37:56
Subject: Re: God has no name


Hi Stephen,

On 8/6/2012 8:29 AM, Bruno Marchal wrote:
[SPK] Which is the definition I use. Any one that actually thinks that God is a person, could be a person, or is the complement (anti) of such, has truly not thought through the implications of such.
[BM
For me, and comp, it is an open problem.
[SPK]
? Why? It's not complicated! A person must be, at least, nameable. A person has always has a name.

[BM]
Why?

   Because names are necessary for persistent distinguishability.

OK. You are using "name" in the logician sense of "definite description". With comp we always have a 3-name, but the first person have no name.



Let us try an informal proof by contradiction. Consider the case where it is *not* necessary for a person to have a name. What means would then exist for one entity to be distinguished from another?

By the entity itself: no problem (and so this is not a problem for the personal evaluation of the measure). By some other entity?



We might consider the location of an entity as a proxy for the purposes of identification, but this will not work because entities can change location and a list of all of the past locations of an entity would constitute a name and such is not allowed in our consideration here.

Sure.



What about the 1p content of an entity, i.e. the private name that an entity has for itself with in its self-referential beliefs?

It has no such name. "Bp & p", for example, cannot be described in arithmetic, despite being defined in arithmetical terms. It is like arithmetical truth, we can't define it in arithmetic language.



Since it is not communicable - as this would make the 1p aspect a non-first person concern and thus make it vanish - it cannot be a name. Names are 3p, they are public invariants that form from a consensus of many entities coming to an agreement, and thus cannot be determined strictly by 1p content. You might also note that the anti-foundation axiom is "every graph has a unique decoration". The decoration is the name! It is the name that allow for non- ambiguous identification. A number's name is its meaning invariant symbol representation class... Consider what would happen to COMP if entities had no names! Do I need to go any further for you to see the absurdity of persons (or semi-autonomous entities) not having names?




Say that it is X. There is something that is not that person and that something must therefore have a different name: not-X. What is God's name? ... It cannot be named because there is nothing that it is not! Therefore God cannot be a person. Transcendence eliminates nameability. The Abrahamist think that Satan is the anti-God, but that would be a denial of God's transcendence. There are reasons why Abrahamists do not tolerate logic, this is one of them.

With comp if God exists it has no name, but I don't see why it would make it a non person. God is unique, it does not need a name.

God is unique because there is no complement nor alternative to it. Ambiguously stated: God is the totality of what is necessarily possible.

That is not bad in a first approximation. With comp, you can make it precise through the set of G鰀el numbers of the true arithmetical sentences. Obviously this is not a computable set, and it is not nameable by the machine (with comp), making set theory somehow too rich for comp. Of course, arithmetic contains or emulates a lot of entities believing in set theory, but we should not reify those beliefs in the ontology. It is better to keep them only in the machine epistemology.

On 8/6/2012 10:37 AM, Bruno Marchal wrote:
Is the translation or encoding a unique mapping? How many possible ways are available to encode B?

There is an infinity of way to encode "B". Some can be just intensionally equivalent (different codes but same logic), or extensionally equivalent but not intensionally equivalent, like Bp and Bp & Dt. They prove the same arithmetical proposition, but obeys different logic.

OK, do you not see that the infinity of ways that "B" can be encoded makes the name of "B" ambiguous?

I don't see that at all.



The name of "B" is at most 1p; a private name and thus subject to Wittgenstein's criticism.

All the names of "B" are third person notion, even if "B" itself cannot recognize its body or code. It is only "self-ambiguous", which is partially relevant for the measure problem. This is why I use modal logic to handle that situation, besides the fact that incompleteness leaves no real choice in the matter.

The experiences are strictly 1p even if they are the intersection of an infinity of computations, but this is what makes then have a zero measure!

Ah?



A finite and semi-closed consensus of 1p's allows for the construction of diaries and thus for the meaningfulness of "shared" experiences. But this is exactly what a non-primitive material world is in my thinking and nothing more. A material world is merely a synchronized collection of interfaces (aka synchronized or 'aligned' bisimulations) between the experiences of the computations. I use the concept of simulations (as discussed by David Deutsch in his book "The Fabric of Reality") to quantify the experiences of computations. You use the modal logical equivalent. I think that we are only having a semantical disagreement here.


?

The problem that I see in COMP is that if we make numbers (or any other named yet irreducible entity) as an ontological primitive makes the measure problem unsolvable because it is not possible to uniquely name relational schemata of numbers. The anti-foundation axiom of Azcel - every graph has a unique decoration - is not possible in your scheme because of the ambiguity of naming that Godel numbering causes. One always has to jump to a meta-theory to uniquely name the entities within a given theory (defined as in Godel's scheme) such that there is a bivalent truth value for the names. Interestingly, this action looks almost exactly like what happens in a forcing! So my claim is, now, that at best your step 8 is true in a forced extension.

1004.

On 8/6/2012 10:37 AM, Bruno Marchal wrote:
[SPK] At what level (relative) is the material hypostases?
[BM]
This is ambiguous. The material hypostases (Bp & Dt) defines the (high) level where machines (the person incarnated by the machine) can make the observations. But it is preferable to extracts all those answer by yourself, for all what I say here needs to be extracted to get the UDA step by step.

Dear Bruno,

OK, we seem to be in agreement on this. At the "high level" there is a meaningful notion of observations (and naming as I have discussed in previous posts) but never at the primitive level.

OK.


My point is that this meaningfulness vanished anywhere outside of this high level.

I agree.



We cannot pull back the meaning of a term when and if we pull back the term to the primitive level, because doing so, as you discuss in step 8,

?


severs the connection that carries the relations that define the unique name that occurs at the high level. This is the problem of epiphenomena of immaterialism.


?


On 8/6/2012 10:37 AM, Bruno Marchal wrote:

We cannot use the Godel numbering because they are not unique,

?
If the names (description) were unique, there would be no first person indeterminacy. A enumerable infinity , non mechanically enumerable though, of explicit description of Stephen King exists in arithmetic, if comp is true.

Dear Bruno,

   But it does not exist uniquely as a singleton in arithmetic

OK.


and that is the problem.

The interesting problem, yes. That is the point.



It does exist as the equivalence relation on a infinite class of computations, but these equivalence classes do not have a power- set of which they are a uniquely defined.

?


Names are only meaningful when and if they are 3p.

Sure.

Bruno



http://iridia.ulb.ac.be/~marchal/




--
You received this message because you are subscribed to the Google Groups "Everything List" group. To post to this group, send email to everything- l...@googlegroups.com. To unsubscribe from this group, send email to everything-list+unsubscr...@googlegroups.com . For more options, visit this group at http://groups.google.com/group/everything-list?hl=en .

http://iridia.ulb.ac.be/~marchal/




--
You received this message because you are subscribed to the Google Groups "Everything List" group.
To post to this group, send email to everything-list@googlegroups.com.
To unsubscribe from this group, send email to everything-list+unsubscr...@googlegroups.com . For more options, visit this group at http://groups.google.com/group/everything-list?hl=en .

http://iridia.ulb.ac.be/~marchal/



--
You received this message because you are subscribed to the Google Groups 
"Everything List" group.
To post to this group, send email to everything-list@googlegroups.com.
To unsubscribe from this group, send email to 
everything-list+unsubscr...@googlegroups.com.
For more options, visit this group at 
http://groups.google.com/group/everything-list?hl=en.

Reply via email to