Realmente, só se n for primo.
É mais complicado do que o previsto.

Saudações,
PJMS

Em 13 de outubro de 2016 21:12, Ralph Teixeira <ralp...@gmail.com> escreveu:

> Hm, devagar -- por exemplo (4,2)=6 nao eh multiplo de 4.
>
> Abraco, Ralph.
>
> 2016-10-13 17:25 GMT-03:00 Pedro José <petroc...@gmail.com>:
>
>> Boa tarde!
>>
>> Basta que p seja diferente de 0 ou n, para n<>0.
>>
>> (n,p) = n! / (p!. (n-p)!),
>>
>> Portanto, só há como tirar o fator n do n! se p! = n! ou (n-p)! = n! ==>
>> p = 0 ou p = n.
>>
>> Se n=0 (0,0) =1 que também não é múltiplo de zero.
>>
>> Saudações,
>> PJMS.
>>
>> Em 13 de outubro de 2016 10:27, marcone augusto araújo borges <
>> marconeborge...@hotmail.com> escreveu:
>>
>>> Obrigado. Em que condições, o binomial (n,p)  é múltiplo de n?
>>>
>>> ------------------------------
>>> *De:* owner-ob...@mat.puc-rio.br <owner-ob...@mat.puc-rio.br> em nome
>>> de Esdras Muniz <esdrasmunizm...@gmail.com>
>>> *Enviado:* quinta-feira, 13 de outubro de 2016 02:31
>>> *Para:* obm-l@mat.puc-rio.br
>>> *Assunto:* [obm-l] Re: [obm-l] aritmética
>>>
>>> E = (13-1)^99 + (13+1)^99 congruente a {(99)x13 - 1} + {(99)x13 + 1}(mod
>>> 13²)  (usando binômio de Newton).
>>> Então fica:
>>> E congruente a 39 (mod 13²).
>>>
>>> Em 12 de outubro de 2016 23:10, marcone augusto araújo borges <
>>> marconeborge...@hotmail.com> escreveu:
>>>
>>>> Determine o resto da divisão de 12^99 + 14^99 por 169
>>>>
>>>> --
>>>> Esta mensagem foi verificada pelo sistema de antivírus e
>>>> acredita-se estar livre de perigo.
>>>>
>>>
>>>
>>>
>>> --
>>> Esdras Muniz Mota
>>> Mestrando em Matemática
>>> Universidade Federal do Ceará
>>>
>>>
>>>
>>> --
>>> Esta mensagem foi verificada pelo sistema de antiv�rus e
>>> acredita-se estar livre de perigo.
>>>
>>> --
>>> Esta mensagem foi verificada pelo sistema de antivírus e
>>> acredita-se estar livre de perigo.
>>>
>>
>>
>> --
>> Esta mensagem foi verificada pelo sistema de antivírus e
>> acredita-se estar livre de perigo.
>>
>
>
> --
> Esta mensagem foi verificada pelo sistema de antivírus e
> acredita-se estar livre de perigo.
>

-- 
Esta mensagem foi verificada pelo sistema de antiv�rus e
 acredita-se estar livre de perigo.

Responder a