#6750: [with spkg, needs review] New version of optional Group Cohomology spkg
-------------------------------+--------------------------------------------
 Reporter:  SimonKing          |       Owner:  SimonKing              
     Type:  enhancement        |      Status:  assigned               
 Priority:  major              |   Milestone:                         
Component:  optional packages  |    Keywords:  cohomology ring p-group
 Reviewer:                     |      Author:  Simon King             
   Merged:                     |  
-------------------------------+--------------------------------------------

Comment(by SimonKing):

 Thanks to Mikael Vejdemo Johansson, I detected another bug in the
 computation of restricted Massey powers. In this example (cohomology of
 C_4 times C_4), the answers of COHO.massey_products() and of
 COCH.massey_power() were inconsistent.

 It is fixed, and used as a doc test, as follows:
 {{{
 sage: tmp_root = tmp_filename()
 sage: from pGroupCohomology import CohomologyRing
 sage: CohomologyRing.set_user_db(tmp_root)
 sage: H = CohomologyRing.user_db(16,2)
 sage: H.make()
 sage: x,a,b,c,d = H.gens()
 sage: c
 c_1_0, a 1-Cochain in H^*(SmallGroup(16,2); GF(2))
 sage: d
 c_1_1, a 1-Cochain in H^*(SmallGroup(16,2); GF(2))
 sage: H.cochain_to_polynomial(c.massey_power())
 0, a 2-Cochain in H^*(SmallGroup(16,2); GF(2))
 sage: H.cochain_to_polynomial(d.massey_power())
 0, a 2-Cochain in H^*(SmallGroup(16,2); GF(2))
 sage: H.cochain_to_polynomial(c.massey_power(2))
 c_2_1, a 2-Cochain in H^*(SmallGroup(16,2); GF(2))
 sage: H.cochain_to_polynomial(d.massey_power(2))
 c_2_2, a 2-Cochain in H^*(SmallGroup(16,2); GF(2))
 }}}
 According to Mikael, this is what he expected (but in the previous
 version, a null cocycle was returned). The result is consistent with the
 set-valued Massey products:
 {{{
 sage: sorted(list(H.massey_products(c,c,c,c)))
 [c_2_1, a 2-Cochain in H^*(SmallGroup(16,2); GF(2)),
  c_2_1+c_1_0*c_1_1, a 2-Cochain in H^*(SmallGroup(16,2); GF(2))]
 sage: sorted(list(H.massey_products(d,d,d,d)))
 [c_2_2, a 2-Cochain in H^*(SmallGroup(16,2); GF(2)),
  c_2_2+c_1_0*c_1_1, a 2-Cochain in H^*(SmallGroup(16,2); GF(2))]
 }}}

 The example that I gave previously (a degree 3 cocycle of
 SmallGroup(27,3)) is still in accordance with theoretical results, it did
 not change.

-- 
Ticket URL: <http://trac.sagemath.org/sage_trac/ticket/6750#comment:38>
Sage <http://sagemath.org/>
Sage: Creating a Viable Open Source Alternative to Magma, Maple, Mathematica, 
and MATLAB

--~--~---------~--~----~------------~-------~--~----~
You received this message because you are subscribed to the Google Groups 
"sage-trac" group.
To post to this group, send email to [email protected]
To unsubscribe from this group, send email to 
[email protected]
For more options, visit this group at 
http://groups.google.com/group/sage-trac?hl=en
-~----------~----~----~----~------~----~------~--~---

Reply via email to