Re: [obm-l] Equacao funcional.

2014-08-27 Por tôpico saulo nilson
f(x^2+y)+f(f(x)-y)=2f(f(x))+2y^2 y=0 f(x^2)=f(f(x)) f(x)=0 f(x^2+y)+f(-y)=2f(0)+2y^2 y=0 f(0)=f(x^2) x^2=0 x=0 e raiz f(0)=0 f(1)=1 f(x^2+x)+f(f(x)-x)=2ff(x)+2x^2 f(4)+f(f(2)-2)=2ff(2)+8 f(2)+f(f(1)-1)=2ff(1)+2 f(2)=4 f(4)=4+2f(4) f(4)=-4 f(3)+f(f(2)+1)=2ff(2)+2 f(3)+f(5)=-6 f(y)+f(-y)=2y^2

Re: [obm-l] Equacao funcional.

2014-08-26 Por tôpico gugu
Caro Douglas, Fazendo y=f(x): f(x^2+f(x))+f(0)=2f(f(x))+2f(x)^2. Fazendo y=-x^2: f(0)+f(f(x)+x^2)=2f(f(x))+2x^4. Comparando, temos f(x)^2=x^4, donde, para todo x, f(x)=x^2 ou f(x)=-x^2. Em particular, f(0)=0. Fazendo então x=0 temos f(y)+f(-y)=2y^2, mas f(y) e f(-y) pertencem a

Re: [obm-l] Equacao funcional.

2014-08-26 Por tôpico Douglas Oliveira de Lima
Espetaculo, muito obrigado!! Em 26 de agosto de 2014 05:26, g...@impa.br escreveu: Caro Douglas, Fazendo y=f(x): f(x^2+f(x))+f(0)=2f(f(x))+2f(x)^2. Fazendo y=-x^2: f(0)+f(f(x)+x^2)=2f(f(x))+2x^4. Comparando, temos f(x)^2=x^4, donde, para todo x, f(x)=x^2 ou f(x)=-x^2. Em

Re: [obm-l] Equacao funcional.

2014-08-26 Por tôpico Jeferson Almir
Aproveitando o momento alguém poderia me ajudar nessa questão?? Determine todas as funções contínuas que projeta três termos sucessivos de uma progressão aritmética em três termos de uma progressão geométrica. Desde já agradeço qualquer ajuda. Em 26 de agosto de 2014 07:40, Douglas Oliveira de

RE: [obm-l] equacao funcional

2007-12-20 Por tôpico Anselmo Alves de Sousa
DESCULPEM nÂO Vi A RESTRIÇÂO Date: Thu, 20 Dec 2007 03:38:09 -0800From: [EMAIL PROTECTED]: [obm-l] equacao funcionalTo: obm-l@mat.puc-rio.br Seja f uma funcao real definida por todo x positivo tal que f(x+y)=f(xy) para todo x e y positivos. Mostre que f é uma funcao constante. Abra

RE: [obm-l] equacao funcional

2007-12-20 Por tôpico Anselmo Alves de Sousa
Seja f uma funcao real definida por todo x positivo tal que f(x+y)=f(xy) para todo x e y positivos. Mostre que f é uma funcao constante. Suponhamos que f é não constante; Assim existe algum x nos reais, digamos x_1, tal que f(x_1) é diferente de f(x_2), x_2 também nos reais e x_1

Re: [obm-l] equacao funcional

2007-12-20 Por tôpico Bruno França dos Reis
Note que para todo t = 2, podemos encontrar um s real positivo tal que t = s + 1/s = (s^2+1)/s. Com efeito, s^2 - ts + 1 = 0, onde o discriminante é t^2 - 4. Daí tiramos que f(t) = f(s + 1/s) = f(1) para t = 2. Para todo t, 1 t 2, encontramos s, 1 s (t) 2, tal que s^2 = t. Assim f(t) = f(s*s)

Re: [obm-l] equacao funcional

2007-12-20 Por tôpico Felipe Diniz
como f(x+y)=f(xy), fazendo x=1 f(y+1)=f(y) assim se provarmos que f(t) é constante para t pertencente a (0,1] acaba. da propriedade acima tambem temos tambem que f(nx)=f(x) e f(n+x)=f(x) para x real positivo e n natural. seja r um irracional e b natural, temos que f(br)=f(r) e tambem temos que

Re: [obm-l] Equacao funcional II

2007-07-25 Por tôpico Carlos Yuzo Shine
Oi Klaus, O fato central que mostra que a função só precisa ser definida nos primos é que a função é multiplicativa, ou seja, que f(xy) = f(x)f(y) (o que foi feito no artigo). Assim, no seu exemplo, f(4) = f(2).f(2), e precisamos só definir f(2), e 2 é primo. Mas permita-me dar um