Le Jeudi 10 Novembre 2005 19:48, GottferDamnt a écrit :
I have another question: I know that with the quantum theory of
immortality, the non-cul-de-sac conjecture involve that there are always
some branches where you can stay alive, but can you follow the same
branches for an eternity? For example, can you stay in a box (even if it is not very probable) forever? It would be unlikely ^^ ! What about that
within Bruno's theory?


The non-cul-de-sac conjecture is more the decision of not taking into account the dead end (which by comp exists everywhere). Tha fact that there is always "no-dead-end" states is more a consequence of the comp assumption (betting I'm some sound lobian machine).

Quentin wrote:

Yes of course, if we consider that all possible "observer moment" could exist, then it follow that a tiny fraction of your consistent histories will follow the same branches for eternity(I have to say that I don't really know what it
mean to stay on the same "branche" (because I think that in fact
consciousness is spanning over a lot/an infinity of almost identical observer moment), but it is of very low measure. Now, how can we know the measure of a
branche through time (what is time anyway ?)... I really don't know ;)


I have also a problem with the expression "staying in the same branche": you always split or differentiate on 2^aleph_0 branches. Do you mean branches looking the same from the first person perspective? Time is the first person perspective I would say. That can be shown necessary when recast through the self-reference logic (G, G*) and their intensional variant (S4Grz, the Z and X logics, ...). I could explain with the modal logics).



Reply via email to