On 8/24/2011 11:57 AM, Bruno Marchal wrote:


Nu = ((ZUY)^2 + U)^2 + Y

ELG^2 + Al = (B - XY)Q^2

Qu = B^(5^60)

La + Qu^4 = 1 + LaB^5

Th +  2Z = B^5

L = U + TTh

E = Y + MTh

N = Q^16

R = [G + EQ^3 + LQ^5 + (2(E - ZLa)(1 + XB^5 + G)^4 + LaB^5 + + LaB^5Q^4)Q^4](N^2 -N)
         + [Q^3 -BL + L + ThLaQ^3 + (B^5 - 2)Q^5] (N^2 - 1)

P = 2W(S^2)(R^2)N^2

(P^2)K^2 - K^2 + 1 = Ta^2

4(c - KSN^2)^2 + Et = K^2

K = R + 1 + HP - H

A = (WN^2 + 1)RSN^2

C = 2R + 1 Ph

D = BW + CA -2C + 4AGa -5Ga

D^2 = (A^2 - 1)C^2 + 1

F^2 = (A^2 - 1)(I^2)C^4 + 1

(D + OF)^2 = ((A + F^2(D^2 - A^2))^2 - 1)(2R + 1 + JC)^2 + 1


Thanks to Jones, Matiyasevitch. Some number Nu verifying that system of diophantine equations (the variables are integers) are "Löbian stories", on which the machine's first person indeterminacy will be distributed. We don't even need to go farer than the polynomial equations to describe the ROE.

I'm reminded of the apocryphal story of Euler being asked by Catherine the Great to counter Diederot who was trying to convert the Russian court to atheism. Euler wrote "e^(i*pi) + 1 = 0 therefore God exists."

Brent

--
You received this message because you are subscribed to the Google Groups 
"Everything List" group.
To post to this group, send email to everything-list@googlegroups.com.
To unsubscribe from this group, send email to 
everything-list+unsubscr...@googlegroups.com.
For more options, visit this group at 
http://groups.google.com/group/everything-list?hl=en.

Reply via email to