On 8/24/2011 11:57 AM, Bruno Marchal wrote:
Nu = ((ZUY)^2 + U)^2 + Y
ELG^2 + Al = (B - XY)Q^2
Qu = B^(5^60)
La + Qu^4 = 1 + LaB^5
Th + 2Z = B^5
L = U + TTh
E = Y + MTh
N = Q^16
R = [G + EQ^3 + LQ^5 + (2(E - ZLa)(1 + XB^5 + G)^4 + LaB^5 + +
LaB^5Q^4)Q^4](N^2 -N)
+ [Q^3 -BL + L + ThLaQ^3 + (B^5 - 2)Q^5] (N^2 - 1)
P = 2W(S^2)(R^2)N^2
(P^2)K^2 - K^2 + 1 = Ta^2
4(c - KSN^2)^2 + Et = K^2
K = R + 1 + HP - H
A = (WN^2 + 1)RSN^2
C = 2R + 1 Ph
D = BW + CA -2C + 4AGa -5Ga
D^2 = (A^2 - 1)C^2 + 1
F^2 = (A^2 - 1)(I^2)C^4 + 1
(D + OF)^2 = ((A + F^2(D^2 - A^2))^2 - 1)(2R + 1 + JC)^2 + 1
Thanks to Jones, Matiyasevitch. Some number Nu verifying that system
of diophantine equations (the variables are integers) are "Löbian
stories", on which the machine's first person indeterminacy will be
distributed.
We don't even need to go farer than the polynomial equations to
describe the ROE.
I'm reminded of the apocryphal story of Euler being asked by Catherine
the Great to counter Diederot who was trying to convert the Russian
court to atheism. Euler wrote "e^(i*pi) + 1 = 0 therefore God exists."
Brent
--
You received this message because you are subscribed to the Google Groups
"Everything List" group.
To post to this group, send email to [email protected].
To unsubscribe from this group, send email to
[email protected].
For more options, visit this group at
http://groups.google.com/group/everything-list?hl=en.