A possible brain wave model of body and mind

```Hi John Clark

Thanks very much for your enlightening response. ```
```
My original and still surviving purpose was to provide a means of
dealing with but not mixing two different categories. Perhaps set theory
would be better, but I am clueless there.

However, the existence of brain waves and the conflation there of mind
and body suggests a possi bly more fruitful model:

body= extended=wave amplitude
mind = inextended = wave phase

If there is any truth to that or any other model
it should be possible to see if this could make any physical sense.
Fourier transforms might also aid interpretation.

Roger Clough, rclo...@verizon.net
9/14/2012
Leibniz would say, "If there's no God, we'd have to invent him
so that everything could function."
----- Receiving the following content -----
From: John Clark
Time: 2012-09-13, 15:40:51
Subject: Re: imaginary numbers in comp

On Thu, Sep 13, 2012 at? Roger Clough  wrote:

> would it make any sense to do comp using complex numbers, where the real part
> is the objective part of the mental the imaginary part is the subjective part
> of the mental

The names "real" and "imaginary" are unfortunate because imaginary numbers are
no more subjective than real numbers, but for historical reasons I guess we're
stuck with those names. From a physics perspective think of the real numbers as
dealing with magnitudes and the imaginary numbers as dealing in rotations in
two dimensions; that's why if you want to talk about speed the real numbers are
sufficient but if you want to talk about velocity you need the imaginary
numbers too because velocity has both a magnitude and a direction.? ?

The square root of negative one is essential if mathematically you want to
calculate how things rotate. It you pair up a Imaginary Number(i) and a regular
old Real Number you get a Complex Number, and you can make a one to one
relationship between the way Complex numbers add subtract multiply and divide
and the way things move in a two dimensional plane, and that is enormously
important. Or you could put it another way, regular numbers that most people
are familiar with just have a magnitude, but complex numbers have a magnitude
AND a direction.

Many thought the square root of negative one (i) didn't have much practical use
until about 1860 when Maxwell used them in his famous equations to figure out
how Electromagnetism worked. Today nearly all quantum mechanical equations have
an"i" in them somewhere, and it might not be going too far to say that is the
source of quantum weirdness. The Schrodinger equation is deterministic and
describes the quantum wave function, but that function is an abstraction and is
unobservable, to get something you can see you must square the wave function
and that gives you the probability you will observe a particle at any spot; but
Schrodinger's equation has an "i" in it and that means very different quantum
wave functions can give the exact same probability distribution when you square
it; remember with i you get weird stuff like i^2=i^6 =-1 and i^4=i^100=1.

All the rotational properties can be derived from Euler's Identity: e^i*PI +1
=0 .

? John K Clark

? John K Clark

?

--
You received this message because you are subscribed to the Google Groups
"Everything List" group.
To post to this group, send email to everything-list@googlegroups.com.
To unsubscribe from this group, send email to
For more options, visit this group at