Tom Caylor wrote:

> Brent Meeker wrote: > > Tom Caylor wrote: > > > Bruno has tried to introduce us before to the concept of universes or > > > worlds made from logic, bottom up (a la constructing elephants). These > > > universes can be consistent or inconsistent. > > > > > > But approaching it from the empirical side (top down rather bottom up), > > > here is an example of a consistent structure: I think you assume that > > > you as a person are a structure, or that you can assume that > > > temporarily for the purpose of argument. You as a person can be > > > consistent in what you say, can you not? Given certain assumptions > > > (axioms) and inference rules you can be consistent or inconsistent in > > > what you say. > > > > Depending on your definition of consistent and inconsistent, there need not > > be any axioms or inference rules at all. If I say "I'm married and I'm not > > married." then I've said something inconsistent - regardless of axioms or > > rules. But *I'm* not inconsistent - just what I've said is. > > > > > I'm not saying the what you say is all there is to who > > > you are. Actually this illustrates what I was saying before about the > > > need for a "reference frame" to talk about consistency, e.g. "what you > > > say, given your currently held axioms and rules". > > > > If you have axioms and rules and you can infer "X and not-X" then the > > axioms+rules are inconsistent - but so what? Nothing of import about the > > universe follows. > > > > Yes, but if you see that one set of axioms/rules is inconsistent with > another set of axioms/rules, then you can deduce something about the > possible configurations of the universe, but only if you assume that > the universe is consistent (which you apparently are calling a category > error). it is possible to have several universes which are consistent with each other , but mutually inconsistent. That is in fact the situation with contemporary mathematics. > A case in point is Euclid's fifth postulate in fact. By > observing that Euclidean geometry is inconsistent with non-Euclidean > geometry (the word "observe" here is not a pun or even a metaphor!), > you can conclude that the local geometry of the universe should follow > one or the other of these geometries. This is exactly the reasoning > they are using in analyzing the WIMP observations. Time and again in > history, math has been the guide for what to look for in the universe. > Not just provability (as Bruno pointed out) inside one set of > axioms/rules (paradigm), but the most powerful tool is generating > multiple consistent paradigms, and playing them against one another, > and against the observed structure of the universe. I hardly follows from that, that all maths is physically true. The point of making observations is to exclude un-physical maths (ie falsify theories). > On the other hand, I think that the real proof of the pudding of > Bruno's approach would be, not does his approach agree with empirical > evidence at the quantum/atomic level, but does it agree at the global > level, e.g. by make correct predictions about the spacial curvature, > compactness, finitude/infinitude, connectedness, etc. of the observed > universe. Of course the quantum vs. global agreement would be the real > "proof" of any TOE. > --~--~---------~--~----~------------~-------~--~----~ You received this message because you are subscribed to the Google Groups "Everything List" group. To post to this group, send email to everything-list@googlegroups.com To unsubscribe from this group, send email to [EMAIL PROTECTED] For more options, visit this group at http://groups.google.com/group/everything-list -~----------~----~----~----~------~----~------~--~---