On 12/9/2011 2:47 AM, meekerdb wrote:
On 12/8/2011 6:35 PM, Stephen P. King wrote:
On 12/8/2011 9:01 PM, meekerdb wrote:
On 12/8/2011 5:48 PM, Stephen P. King wrote:
On 12/8/2011 6:45 PM, meekerdb wrote:
On 12/8/2011 3:04 PM, Craig Weinberg wrote:
On Dec 8, 4:44 pm, "Stephen P. King"<stephe...@charter.net>  wrote:
On 12/8/2011 4:22 PM, Craig Weinberg wrote:
To suppose computation requires a material process would be
materialism, wouldn't it?
Hi Craig,

Not quite, a dualist model would require that some form of material process occur for computations and would go even further in prohibiting computations from not having a physical component but would not specify which it was. This way we preserve computational universality without
having to drift off into idealism and its own set of problems.

True, it could be dualism (or an involuted monism) too, but I wouldn't
call a theory of mind which depends on material processes

You might if you thought that's all that was needed to make a mind, in contrast to some supernatural soul stuff. It basically boils down to whether you suppose there are some things that are real (e.g. some things happen and some don't, or some stuff exists and some doesn't) and some aren't or you suppose that everything happens and exists. In the latter case there's really no role for ur stuff whose only function is to mark some stuff as existing and the rest not.


Hi Brent,

Interesting role that you have cast the physical world into, but ironically "stuff whose only function is to mark some stuff as existing and the rest not" and "everything happens and exists" do not sleep together very well at all. The "everything happens and exists" hypothesis has a huge problem in that is has no way of sorting the "Tom sees this and not that" from the " from "Dick sees this and not that" and "Jane sees this and not that", where as the "stuff whose only function is to mark some stuff as existing and the rest not" can be coherently defined as the union of what Tom, Dick and Jane see and do not see. The idealists would have us believe that along with numbers their operations there exists some immaterial stratifying medium that sorts one level of Gedel numbering from another. I am reminded of a video I watched some time ago where a girl had three sealed jars. One contained nothing, one contained 4 6-die and the third contained 1,242,345,235,235 immaterial 6-die. ... The physical world is very much real, even if it vanishes when we look at it closely enough. But we might consider that just as it vanishes so too does the ability to distinguish one set of numbers from another. If the ability to distinguish this from that itself vanishes, how are we to claim that computations exist "independent of physics"? Seriously!?!

Where did I claim that. I was just pointing out the genesis of "everything theories"; you did notice that this is called the "everything-list" didn't you?

HI Brent,

I commented on what you wrote. Care to respond or will you beg my question? How does immaterial based "everything theories" deal with this problem that I just outlined?

You should ask a proponent of such theories; like Bruno. But as I understand it, the ultimate application of Ocaam's razor is to refuse to make any distinctions, so that we theorize that everything exists. But the unqualified everything doesn't seem to be logically coherent. So Bruno backs off to an "everything" that is well defined and still possibly comprehensive, i.e. everything that is computable. Within this plenuum there are various states (numbers in arithmetic) and some principle will pick out what part we experience. Computation includes an uncountable infinity of states and relations between states - so whatever we experience must be in there somewhere.

I'm intrigued by David Deutsche's assertion that different physics implies that different things are computable, but I'm doubtful that it's true.

Hi Brent,

What is the basis of your doubt? Have you not looked at, for instance, the work of Tipler <http://en.wikipedia.org/wiki/Frank_J._Tipler#The_Omega_Point_cosmology> that discusses how different physics alters the kinds of computations that can occur? The notion of Hypercomputation <http://en.wikipedia.org/wiki/Hypercomputation> is a good place to start. My agreement with Deutsch's assertion does not follow from just taking his words as authority. Consider a physical would in which the Plank constant was zero, Newton's universe for example; in such a world computations would be radically different if only because there do not exists any stable atoms. All computers would be sporadic and stochastic Boltzmann type computers. Would the same kind of universality that we have with our Turing thesis exist in such? The paper tape and read head would not have any physical support in the sense that its continuous existence over an arbitrary number of operations.



You received this message because you are subscribed to the Google Groups 
"Everything List" group.
To post to this group, send email to everything-list@googlegroups.com.
To unsubscribe from this group, send email to 
For more options, visit this group at 

Reply via email to