> On 22 Feb 2018, at 23:17, Brent Meeker <meeke...@verizon.net> wrote:
> 
> 
> 
> On 2/22/2018 1:09 AM, Bruno Marchal wrote:
>>> On 21 Feb 2018, at 00:48, Brent Meeker <meeke...@verizon.net> wrote:
>>> 
>>> 
>>> 
>>> On 2/18/2018 10:21 AM, Bruno Marchal wrote:
>>>> If consciousness is invariant for a digital transplant, it is not much a 
>>>> matter of choice.
>>> But that's simply assuming what is to be argued.
>> 
>> ?
>> 
>> It is the working hypothesis. The argument is in showing that this enforces 
>> Plato and refutes Aristotle. Physics becomes a branch of machine’s 
>> psychology or theology.
>> 
>> 
>> 
>> 
>>> The argument must be that the doctor has done this before (maybe to humans, 
>>> maybe to mice) and there was not detectable change in behavior, so it's 
>>> reasonable to bet on the doctor.
>> The reason why you say “yes” to the doctor is private. It needs an act of 
>> faith because no experience at all can confirm Computationalism.
> 
> That's moving the goal post.  You can't convince me that if you knew the 
> doctor's work had no observable affect on the behavior of mice if would not, 
> for you, count as evidence in favor of consciousness being retained.  Nothing 
> is ever "confirmed" with certainty.


My point was stronger. Even if I say yes and truly survive “100%”, that cannot 
count as a proof that I have survived integrally, The reason is the possibility 
of anosognosia. 
And the point is a theorem in the computationalist metaphysics. We know that we 
would believe correctly to have survived (and thus know it in the Theaetetical 
sense), but with an intellectual doubt enforcing to not claim to have 
*necessarily*survive, keeping the theological act of faith mandatory. Of 
course, we can bet that the humans will forget this ...





> 
>> Due to some possible anosognosia, even doing the digital transplant 
>> experience oneself would prove nothing, even to yourself (despite the 
>> feeling). You can know that you have survived, but you cannot know for sure 
>> that you have survived integrally (but you can know that in the Theoretical 
>> sense, slightly weakened).
>> 
>> A doctor who claim that we survive such transplant, or that science has 
>> proven we can survive such transplant is automatically a con-man.
> 
> Not at all.  He may be going on the best available evidence.  Just because 
> it's not proven in your axiomatic system doesn't mean it has no credence.

Of course. Computationalism just insist that in all case, it asks for the act 
of faith. Obviously, we have to do that every seconds, if we assume mechanism. 
The credence can be very high/ My point is more academical, if you want, no 
matter how I feel after the transplantation, it is never a “proof” that 
mechanism is correct, or that I have survived. Like I cannot prove that I am 
conscious. 




> 
>> 
>>>> The physical reality is given by a first person plural reality emerging 
>>>> from complex compromises between truth and all universal numbers. The 
>>>> measure one, on which we hope some day people get the equivalent of 
>>>> Gleason theorem, i.e. the one provided by []p & <>t (& p) with p sigma_1, 
>>>> obey(s) indeed quantum logic(s) where expected. Nature confirms indexical 
>>>> comp, and indexical QM (we could rename also, then).
>>> This is based on Kripke semantics, but I have not understood why its axioms 
>>> do not include that a world is necessarily accessible from itself?
>> All modal logic which have the axiom k ([](p -> q) -> ([]p -> []q)), and is 
>> close for the necessitation rule (p / []p) admits a Kripke semantics, and 
>> vice versa. The theory K has only k as axiom. A modal frame respect  []p -> 
>> p if and only if each worlds is accessible to itself (a frame respect a 
>> formula means that the formula is true in all worlds, for all valuations of 
>> the atomic sentences). But []p -> p is not validate in the model with one 
>> world, with p false in that world, and having no accessibility arrow. So []p 
>> -> p is not valid in an arbitrary Kripke model, and []p -> p is not a 
>> theorem of K.
>> 
>> That is nice, because the logic of provability (G) has cul-de-sac world (in 
>> which []# is always valid trivially, for any #, and such world do not access 
>> to themselves), and so []p -> p is not a theorem, and the relation cannot be 
>> reflexive. That []p -> p is not valid in the provability logic is immediate 
>> if you think to the arithmetical interpretation. []f -> f, i.e. ~[]f , i.e. 
>> <>t, i.e. consistency, would be provable, contrary to what the second 
>> incompleteness says. Or show that if we have []p -> p (as theorem), you can 
>> easily show that the Löb’s formula ([]([]p -> p) -> []p), would entail a 
>> contradiction:
>> 
>> []f -> f. (Let us assume we can prove that)
>> []([]f -> f).  (By necessitation)
>> []([]f -> f) -> []f. (By Löb)
>> []f (modus ponens on second and third lines)
>> f   (modus ponens on first and preceding line)
>> 
>> Bruno
> 
> OK, thanks.

Welcome!

Bruno




> 
> Brent
> 
> -- 
> You received this message because you are subscribed to the Google Groups 
> "Everything List" group.
> To unsubscribe from this group and stop receiving emails from it, send an 
> email to everything-list+unsubscr...@googlegroups.com.
> To post to this group, send email to everything-list@googlegroups.com.
> Visit this group at https://groups.google.com/group/everything-list.
> For more options, visit https://groups.google.com/d/optout.

-- 
You received this message because you are subscribed to the Google Groups 
"Everything List" group.
To unsubscribe from this group and stop receiving emails from it, send an email 
to everything-list+unsubscr...@googlegroups.com.
To post to this group, send email to everything-list@googlegroups.com.
Visit this group at https://groups.google.com/group/everything-list.
For more options, visit https://groups.google.com/d/optout.

Reply via email to