Note that these ferrites have substantially different properties in the
small signal than they do for large scale magnetic excursions.  An RF
engineer would shoot you for bringing a magnet near his ferrites because
the high magnetic field can bias the material away from the desirable high
permeability small signal linear operating point in the B-H curve of the
material.  When you begin putting really large signals into a ferrite the
material behaviors become complicated because, not only is the B-H curve
nonlinear, but it also has hysteresis.  There is plenty of room for odd
behavior in such a complicated material.  Sometimes when I look at the B-H
curves for large signal excitation of a ferrite it reminds me of the
temperature-entropy diagram.

Regarding the magnetocaloric effect (MCE)... the field has centered around
magnetic refrigeration and the materials that dominate the field are those
exhibiting the "giant magnetocaloric effect" which include primarily
materials made with gadolinium.  So, ferrite materials may exhibit some
MCE, but are not optimized for it.  This suggests that MCE may be just a
side effect in the ferrite during the Manelas device operation, rather than
a primary component of the effect.  Otherwise, why wouldn't you use a
material with the giant MCE?

On Sun, Feb 26, 2017 at 7:47 AM, <bobcook39...@gmail.com> wrote:

> Axil—
>
>
>
> IMHO you have finally got the picture!!!! at least with respect to LENR.
>
>
>
> Bob Cook
>
>
>
> *From: *Axil Axil <janap...@gmail.com>
> *Sent: *Friday, February 24, 2017 3:47 PM
> *To: *vortex-l <vortex-l@eskimo.com>
> *Subject: *Re: [Vo]:DESCRIBING THE MANELAS Phenomenon
>
>
>
> Whenever we can get the spin of an atom to move: whenever we can get a
> spin to lose OR gain energy, that energy can be transferred to an electron
> with high efficiency.  There are a number of ways that atomic spin can be
> excited: *magnetocaloric *where heat energy is transferred to the spin of
> an atom embedded in a lattice through metal lattice phonons of that lattice
> or quantum mechanical vibrations that are inherent in the heisenberg
> uncertainty principle. The key is to amplify this naturally occurring spin
> movements enough to move electrons strong enough to generate usable
> voltages and currents. That amplification mechanism might be done by
> setting up a coherence boundary condition that involves a change of state
> between coherence and incoherence where a slight external magnetic
> perturbation triggers this change of state.
>
>
>
> Barium ferrite might be a magnetic current superconductor where magnetic
> currents flow inside its lattice.
>
>
>
> An example of this  magnetic current superconductor might be a magnet that
> allows magnetic flux lines to pass through it or not based on an
> external parameter: may be temperature or an external magnetic
> perturbation as an example.
>
>
>
> See (Barium ferrite is a magnetic insulator)
>
>
>
> http://www.nature.com/nmat/journal/v16/n3/full/nmat4812.html
>
>
> Current-induced switching in a magnetic insulator
>
>
>
> The spin Hall effect in heavy metals converts charge current into pure
> spin current, which can be injected into an adjacent ferromagnet to exert a
> torque. This spin–orbit torque (SOT) has been widely used to manipulate the
> magnetization in metallic ferromagnets. In the case of magnetic insulators
> (MIs), although charge currents cannot flow, spin currents can propagate,
> but current-induced control of the magnetization in a MI has so far
> remained elusive. Here we demonstrate spin-current-induced switching of a
> perpendicularly magnetized thulium iron garnet film driven by charge
> current in a Pt overlayer. We estimate a relatively large spin-mixing
> conductance and damping-like SOT through spin Hall magnetoresistance and
> harmonic Hall measurements, respectively, indicating considerable spin
> transparency at the Pt/MI interface. We show that spin currents injected
> across this interface lead to deterministic magnetization reversal at low
> current densities, paving the road towards ultralow-dissipation
> spintronic devices based on MIs.
>
>
>
> On Fri, Feb 24, 2017 at 5:29 PM, Jones Beene <jone...@pacbell.net> wrote:
>
> Whenever purported "free energy" phenomena turn up with no apparent source
> of excess energy, there are a limited number of candidates which seem to
> rear their ugly heads.
>
> This only applies to LENR in the absence of real nuclear energy, but the
> nucleus can be part of a combined MO. In rough order of scientific validity
> and usefulness, these candidates for the source of gain are:
>
> 1) ZPE (aether, raumenergie, dynamical Casimir effect, space energy,
> vacuum energy, quantum energy, Hotson epo field, quantum foam, etc)
> 2) CMB cosmic microwave background (3K-CMB)
> 2) neutrinos
> 4) Schumann resonance
> 5) Fair weather field
> 6) Magnetic field of earth
> 7) Ambient heat (plus deep heat sink)
> 8) Below absolute zero (deeper heat sink)
> 9) Anti-gravity effect
>
> There are more but they tend to be different wording or combinations of
> the above ... and even more incredulous. Many combinations are possible.
>
> The main reason for bringing this up is that recently CMB has been
> estimated to be slightly more robust than once thought and with new ways to
> couple to it. The CMB is probably a subset of ZPE but the energy density of
> space in terms of the microwave-only spectrum is the equivalent of 0.261 eV
> per cubic cm, though the actual temperature of 2.7 K is much less than that
> would indicate - and the peak of the spectrum is at a frequency of 160.4
> GHz. ZPE as a whole may be more robust, but CMB is adequate for many uses.
>
> The peak intensity of the background is about... ta ad.. a whopping 385
> MJy/Sr (that's MegaJanskys per Steradian (I kid you not) which is a
> candidate for the oddest metric in all of free energy, maybe all of physics
> ... along with furlongs per fortnight).
>
> At any rate, if one could invent the way to couple to CMB easily, it would
> be possible to see an effective temperature equivalent in an excellent
> range for thermionics, for instance. The ~2 mm wavelength is interesting
> too. There have been fringe reports of anomalies with 13 gauge wire but
> anything with the number 13 is going to bring out the worst ...
>
>
>
>
>

Reply via email to