On 22 Jul 2011, at 14:17, 1Z wrote:



On Jul 22, 10:08 am, Bruno Marchal <marc...@ulb.ac.be> wrote:
On 21 Jul 2011, at 17:54, meekerdb wrote:

On 7/21/2011 2:27 AM, Bruno Marchal wrote:
But I think you beg the question by demanding an axiomatic
definition and rejecting ostensive ones.

Why?
The point is that ostensive definition does not work for justifying
an ontology.

That seems to be a non-sequitur.  How can any kind of definition
justify an ontology?

Because a definition or an axiomatization refer to an intended model,
of a theory which handle existential quantifier. The theory of group
requires the existence of a neutral elements, for example. The theory
of number requires zero, etc.


But the "ontology" of a model need not be real, or be intended to be.
The intended model could be a fictional world. for instance.

The question is: do you believe really that Fermat theorem is fiction?




 Definitions are about the meaning of words.  If I point to a table
and say "Table." I'm defining "table", not justifying an ontology.

OK. And then what? You are just pointing on some pattern.



That's what the dream argument shows. Being axiomatic does not beg
the question. You can be materialist and develop an axiomatic of
primitive matter. The whole point of an axiomatic approach consists
in being as neutral as possible on ontological commitment.

But what you demanded was a *physical* axiomatic definition.  Which
seems to be a demand that the definition be physical, yet not
ostensive.  I think that's contradictory.

I did not asked for a physical axiomatic definition, but for an
axiomatic definition of physical (and this without using something
equivalent to the numbers, to stay on topic).

Numbers aren't intended to be real (or unreal) in physics
That protons are really made of three quarks is asserted, but that
is asserting the real exsistence of quarks, not of "3".

What do you mean by "real existence"? If you mean "primitive existence" then you just contradict comp.




Axiomatics are already in Platonia so of course that forces
computation to be there.

The computations are concrete relations.

If the are concrete then we should be able to point to them.

Either by concrete you mean "physical", and that beg the question.
If not, I can point on many computations is arithmetic

What would make them concrete, if not being physical?

If physical means concrete, then comp is false, or you have to point on a flaw in the UD Argument.




. This needs
Gödel's ariothmetization, and so is a bit tedious, but it is non-
controversial that such things exist. Indeed RA and PA proves their
existence.



They don't need axioms to exist. Then the numbers relation can be
described by some axiomatic.

And one can regard the numbers as defined by their relations.  So
the "fundamental ontology" of numbers is reduced to a description of
relations. The is no need to suppose they exist in the sense of
tables and chairs.

Indeed.



This means only that we *can* agree on simple (but very fertile)
basic number relations. For primitive matter, that does not exist,
and that is why people recourse to ostensive "definition". They
knock the table, and say "you will not tell me that this table does
not exist". The problem, for them, is that I can dream of people
knocking tables. So for the basic fundamental ontology, you just
cannot use the ostensive move (or you have to abandon the dream
argument, classical theory of knowledge, or comp). But this moves
seems an ad hoc non-comp move, if not a rather naive attitude.

What "dream argument"?  That all we think of as real could be a
dream?  I think that is as worthless as solipism.

This is the recurring confusion between subjective idealism and
objective idealism. Objective idealism is not a choice, but a
consequence of the comp assumption and the weak Occam razor.

Bruno

http://iridia.ulb.ac.be/~marchal/

--
You received this message because you are subscribed to the Google Groups "Everything List" group.
To post to this group, send email to everything-list@googlegroups.com.
To unsubscribe from this group, send email to everything-list+unsubscr...@googlegroups.com . For more options, visit this group at http://groups.google.com/group/everything-list?hl=en .


http://iridia.ulb.ac.be/~marchal/



--
You received this message because you are subscribed to the Google Groups 
"Everything List" group.
To post to this group, send email to everything-list@googlegroups.com.
To unsubscribe from this group, send email to 
everything-list+unsubscr...@googlegroups.com.
For more options, visit this group at 
http://groups.google.com/group/everything-list?hl=en.

Reply via email to